
PolySpace® Products for C++ 7
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

PolySpace® Products for C++ Reference

© COPYRIGHT 1999–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2009 Online Only Revised for Version 7.0 (Release 2009a)
September 2009 Online Only Revised for Version 7.1 (Release 2009b)
March 2010 Online Only Revised for Version 7.2 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Options Description

1
Overview . 1-2

Sources/Includes . 1-3
-results-dir Results_Directory . 1-3
-sources files or -sources-list-file file_name 1-3
-I directory . 1-5

General . 1-6
Overview . 1-6
-prog Session identifier . 1-6
-date Date . 1-7
-author Author . 1-7
-verif-version Version . 1-7
-keep-all-files . 1-8
-continue-with-existing-host (Deprecated) 1-8
-allow-unsupported-linux (Deprecated) 1-9
Report Generation . 1-9

Targets/Compilers . 1-12
-target TargetProcessorType . 1-12
GENERIC ADVANCED TARGET OPTIONS 1-13
-OS-target OperatingSystemTarget 1-19
-D compiler-flag . 1-19
-U compiler-flag . 1-20
-include file1[,file2[,...]] . 1-20
-post-preprocessing-command "command" 1-21
-post-analysis-command <file_name> or "command" 1-22

Compliance with Standards . 1-24
-dos . 1-24
Embedded Assembler . 1-25
-wchar-t-is-unsigned-long . 1-26
-size-t-is-unsigned-long . 1-26
-no-extern-C . 1-26

iii

-no-stl-stubs . 1-27
-dialect DialectName . 1-27
-wchar-t-is . 1-28
-for-loop-index-scope . 1-28
-ignore-pragma-pack . 1-29
Visual Specific Options . 1-30
Coding Rules Checker . 1-31
-ignore-constant-overflows . 1-35
-allow-undef-variables . 1-35
-allow-negative-operand-in-shift . 1-36
-Wall . 1-36

PolySpace Inner Settings . 1-37
-unit-by-unit . 1-37
-unit-by-unit-common-source filename 1-38
-main sub_program_name . 1-38
Generate a Main Using a Given Class 1-39
-main-generator-calls . 1-42
General options for the generation of mains 1-43
-data-range-specifications file_name 1-46
-no-automatic-stubbing . 1-47
-ignore-float-rounding . 1-47
-detect-unsigned-overflows . 1-49
-enum-type-definition . 1-50
-machine-architecture . 1-50
-max-processes . 1-51
-extra-flags option-extra-flag . 1-52
-cpp-extra-flags flag . 1-52
-il-extra-flags flag . 1-52

Precision/Scaling . 1-54
-quick (Deprecated) . 1-54
-O(0-3) . 1-55
-from verification-phase . 1-56
-to verification-phase . 1-57
-context-sensitivity "proc1[,proc2[,...]]" 1-58
-context-sensitivity-auto . 1-58
-path-sensitivity-delta number . 1-59
-k-limiting number . 1-59
-inline "proc1[,proc2[,...]]" . 1-60
-respect-types-in-globals . 1-61
-respect-types-in-fields . 1-61
-less-range-information . 1-62

iv Contents

-no-pointer-information . 1-63
Tuning Precision and Scaling Parameters 1-64

MultiTasking (PolySpace Server for C/C++ Only) 1-66
-entry-points str1[,str2[,...]] . 1-66
-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]" 1-66
-temporal-exclusions-file file_name 1-67

Specific Batch Options . 1-69
-server server_name_or_ip[:port_number] 1-69
-sources-list-file file_name . 1-70
-v | -version . 1-70
-h[elp] . 1-70

Check Descriptions

2
Check Categories . 2-2
Acronyms associated to C++ specific constructions: 2-2
Acronym Not Related to C++ Constructions (Also Used for
C Code): . 2-7

Colored Source Code for C++ . 2-10
Function Returns a value: FRV . 2-11
Non Null this-pointer: NNT . 2-12
Positive Array Size: CPP . 2-14
Incorrect typeid Argument: CPP . 2-15
Incorrect dynamic_cast on Pointer: CPP 2-16
Incorrect dynamic_cast on Reference: CPP 2-18
Invalid Pointer to Member: OOP . 2-19
Call of Pure Virtual Function: OOP 2-20
Incorrect Type for this-pointer: OOP 2-21
Potential Call to: INF . 2-24
Non-Initialized Variable: NIV/NIVL 2-26
Non-Initialized Pointer: NIP . 2-27
User Assertion Failure: ASRT . 2-28
Overflows and Underflows . 2-30
Scalar or Float Division by zero: ZDV 2-34
Shift Amount is Outside its Bounds: SHF 2-35

v

Left Operand of Left Shift is Negative: SHF 2-36
POW (Deprecated) . 2-38
Array Index is Outside its Bounds: OBAI 2-38
Function Pointer Must Point to a Valid Function: COR . . . 2-39
Wrong Number of Arguments: COR 2-40
Wrong Type of Argument: COR . 2-41
Pointer is Outside its Bounds: IDP 2-42
Function throws: EXC . 2-50
Call to Throws: EXC . 2-52
Destructor or Delete Throws: EXC 2-54
Main, Tasks or C Library Function Throws: EXC 2-56
Exception Raised is Not Specified in the Throw List:
EXC . 2-58

Throw During Catch Parameter Construction: EXC 2-60
Continue Execution in __except: EXC 2-62
Unreachable Code: UNR . 2-63
Non Terminations: Calls and Loops 2-65

Approximations Used During Verification

3
Why PolySpace Verification Uses Approximations 3-2
What is Static Verification . 3-2
Exhaustiveness . 3-3

Approximations Made by PolySpace Verification 3-4
Volatile Variables . 3-4
Structures with Volatile Fields . 3-4
Absolute Addresses . 3-5
Pointer Comparison . 3-5
Left Shift on Negative Variables . 3-5
Bitfields . 3-6
Shared Variables . 3-6
Trigonometric Functions . 3-7
Unions . 3-7
Constant Pointer . 3-8

vi Contents

1

Options Description

• “Overview” on page 1-2

• “Sources/Includes” on page 1-3

• “General” on page 1-6

• “Targets/Compilers” on page 1-12

• “Compliance with Standards” on page 1-24

• “PolySpace Inner Settings” on page 1-37

• “Precision/Scaling” on page 1-54

• “MultiTasking (PolySpace Server for C/C++ Only)” on page 1-66

• “Specific Batch Options” on page 1-69

1 Options Description

Overview
This chapter describes all options available within PolySpace® software. All of
these options with the exception of the multitasking options are accessible
through the graphical user interface of the PolySpace Launcher.

They can also be accessed with the associated batch command polyspace-cpp.

1-2

Sources/Includes

Sources/Includes

In this section...

“-results-dir Results_Directory” on page 1-3

“-sources files or -sources-list-file file_name” on page 1-3

“-I directory” on page 1-5

-results-dir Results_Directory
This option specifies the directory in which PolySpace will write the results
of the verification. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
is to be copied using the "Save as" option.

Default:

Shell Script: The directory in which tool is launched.

From Graphical User Interface: C:\PolySpace_Results

Example Shell Script Entry:

polyspace-cpp -results-dir RESULTS ...

export RESULTS=results_`date +%d%B_%HH%M_%A`

polyspace-cpp -results-dir `pwd`/$RESULTS ...

-sources files or -sources-list-file file_name
-sources "file1[file2[...]]" (Linux® and Solaris™)

or

-sources "file1[,file2[, ...]]" (Windows®, Linux and Solaris)

or

1-3

1 Options Description

-sources-list-file file_name (not a graphical option)

List of source files to be analyzed, double-quoted and separated by commas.
Note that UNIX® standard wild cards are available to specify a number of files.

Note The specified files must have valid extensions. The extensions are not
case-sensitive: *.(c|C|cc|cpp|cPp|CPP|cxx|CxX|CXX)

Defaults:

sources/*.(c|C|cc|cpp|cPp|CPP|cxx|CxX|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-cpp -sources "my_directory/*.cpp"
polyspace-cpp -sources "my_directory/file1.cc other_dir/file2.cpp"

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-cpp -sources "my_directory/file1.cpp,other_dir/file2.cc"

Using -sources-list-file, each file name need to be given with an absolute path.
Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

Note This option is only available in batch mode.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"
polyspace-cpp -sources-list-file "/home/poly/files.txt"

1-4

Sources/Includes

-I directory
This option is used to specify the name of a directory to be included when
compiling C++ sources. Only one directory may be specified for each –I, but
the option can be used multiple times.

Default:

• When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

• If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-I" list

Example Shell Script Entry-1:

polyspace-cpp -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-cpp -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-cpp

is equivalent to

polyspace-cpp -I ./sources

1-5

1 Options Description

General

In this section...

“Overview” on page 1-6

“-prog Session identifier” on page 1-6

“-date Date” on page 1-7

“-author Author” on page 1-7

“-verif-version Version” on page 1-7

“-keep-all-files” on page 1-8

“-continue-with-existing-host (Deprecated)” on page 1-8

“-allow-unsupported-linux (Deprecated)” on page 1-9

“Report Generation” on page 1-9

Overview
This section collates all options relating to the identification of the verification,
including the destination directory for the results and sources.

-prog Session identifier
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.

Default:

Shell Script: polyspace

GUI: New_Project

Example shell script entry:

polyspace-cpp -prog myApp ...

1-6

General

-date Date
This option specifies a date stamp for the verification in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Default:

Day of launching the verification

Example shell script entry:

polyspace-cpp -date "02/01/2002"...

-author Author
This option is used to specify the name of the author of the verification.

Default:

the name of the author is the result of the whoami command

Example shell script entry:

polyspace-cpp -author "John Tester"

-verif-version Version
Specifies the version identifier of the verification. This option can be used to
identify different verifications. This information is identified in the GUI as
the Version.

Default:

1.0.

Example shell script entry:

polyspace-cpp -verif-version 1.3 ...

1-7

1 Options Description

-keep-all-files
When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart PolySpace verification
from the end of any complete pass (provided the source code remains entirely
unchanged). If this option is not used, you must restart the verification from
scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the software.

This option is applicable only to client verifications. Intermediate results are
always removed before results are downloaded from the PolySpace server.

Note To cleanup intermediate files at a later time, you can select
Tools > Clean Results in the Launcher.

This options deletes the preliminary results files from the results directory.

Default:

Disabled.

Example shell script entry:

polyspace-cpp -keep-all-files

-continue-with-existing-host (Deprecated)

Note This option is deprecated in R2010a and later releases, and no
longer exists in the user interface. PolySpace verification now continues
regardless of the system configuration. The software still checks the hardware
configuration, and issues a warning if it does not satisfy requirements.

When this option is set, the verification will continue even if the system is
under specified or its configuration is not as preferred by PolySpace software.

1-8

General

Verified system parameters include the amount of RAM, the amount of swap
space, and the ratio of RAM to swap.

-allow-unsupported-linux (Deprecated)

Note This option is deprecated in R2010a and later releases, and no longer
exists in the user interface. PolySpace verification now continues regardless
of the Linux distribution. If the Linux distribution is not officially supported,
the software displays a warning in the log file.

This option specifies that PolySpace verification will be launched on an
unsupported OS Linux distribution.

PolySpace software supports the Linux distributions listed in “Hardware and
Software Requirements” in the PolySpace Installation Guide.

Report Generation
When this option is selected, PolySpace software creates a verification report,
using the following options:

• “-report-template Report_Template_Name” on page 1-9

• “-report-output-format Output_Format” on page 1-10

• “-report-output-name Name” on page 1-10

-report-template Report_Template_Name
Generates a verification report, using the specified report template name.
The report is generated at the end of the verification process, before any
post-analysis-command is executed.

Default:

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Developer.rpt

Example Shell Script Entry:

1-9

1 Options Description

polyspace-cpp -report-template c:/polyspace/my_template

-report-output-format Output_Format
Specify the output format for the report specified by the report-template
option. The argument is not case sensitive.

Valid options are:

• HTML

• PDF

• RTF

• WORD

• XML

Note WORD format is not available on UNIX platforms, RTF format is used
instead.

Default:

If you do not specify an output format, RTF is used by default.

Example Shell Script Entry:

polyspace-cpp -report-template my_template report-output-format
pdf

-report-output-name Name
Specify the name of the file that is generated for the verification report.

Default:

If you do not specify a name, the following name is used by default:

-Prog_TemplateName.Format

1-10

General

where Prog is the argument of prog option, TemplateName is the name of the
report template specified by the -report-template option, and Format is the
file extension for the format specified by the report-output-format option.

Example Shell Script Entry:

polyspace-cpp -report-template my_template report-output-name
Airbag_V3.rtf

1-11

1 Options Description

Targets/Compilers

In this section...

“-target TargetProcessorType” on page 1-12

“GENERIC ADVANCED TARGET OPTIONS” on page 1-13

“-OS-target OperatingSystemTarget” on page 1-19

“-D compiler-flag” on page 1-19

“-U compiler-flag” on page 1-20

“-include file1[,file2[,...]]” on page 1-20

“-post-preprocessing-command "command"” on page 1-21

“-post-analysis-command <file_name> or "command"” on page 1-22

-target TargetProcessorType
This option specifies the target processor type, and by doing so informs
PolySpace of the size of fundamental data types and of the endianess of the
target machine.

Possible values are: sparc, m68k, powerpc, i386, c-167, mcpu, or PST Generic
target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. One or more
generic targets can also be specified and saved. In addition, you can analyze
code intended for an unlisted processor type using one of the listed processor
types, if they share common data properties. Refer to “Setting Up a Target” in
the PolySpace Products for C++ User’s Guidefor more details.

For information on specifying a generic target, or modifying the mcpu target,
see “GENERIC ADVANCED TARGET OPTIONS” on page 1-13.

Note The generic target option is incompatible with any visual dialect.

Default:

1-12

Targets/Compilers

sparc

Example shell script entry:

polyspace-cpp -target m68k ...

GENERIC ADVANCED TARGET OPTIONS
The Generic target options dialog box opens when you select an mcpu target,
or a generic target.

This dialog box allows you to specify a generic "Micro Controller/Processor
Unit" or mcpu target name. Initially, it is necessary to use the GUI to specify
the name of a new mcpu target – say, “MyTarget”.

Note The generic target option is incompatible with any visual dialect.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

• char [8, 8], char [16,16]

• short [16, 16]

• int [16, 16]

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

• char is signed

• little-endian

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-cpp -target MyTarget

1-13

1 Options Description

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

polyspace-cpp -target mcpu -align 8

-little-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: i386.

For a little endian target, the less significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0xFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-c -target mcpu -little-endian

-big-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

Example shell script entry:

polyspace-c -target mcpu -big-endian

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

1-14

Targets/Compilers

Default mode:

The sign of char is left to assume the target’s default behavior. By default all
targets are considered as signed except for powerpc targets.

Signed:

Disregards the target’s default char definition, and specifies that a "signed
char" should be used.

Unsigned:

Disregards the target’s default char definition, and specifies that a "unsigned
char" should be used.

Example Shell Script Entry

polyspace-cpp -default-sign-of-char unsigned -target mcpu ...

-char-is-16bits
This option is available only when you select a mcpu generic target.

The default configuration of a generic target defines a char as 8 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects is also set to 16 bits and so, incompatible
with the options -short-is-8 bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

• computation of size of for objects

• detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

polyspace-cpp -target mcpu -char-is-16bits

1-15

1 Options Description

-short-is-8bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

polyspace-cpp -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a generic target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-cpp -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.

Example shell script entry

1-16

Targets/Compilers

polyspace-cpp -target mcpu -long-long-is-64bits

-double-is-64bits
This option is available when either a generic target has been chosen.

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

- Computation of sizeofobjects referencing double type

- Detection of floating point underflow/overflow

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);
s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

}

Using the default configuration of sharc21x62, C PolySpace assumes that a
value of 1 is assigned to s1, 2 is assigned to s2, and there is a consequential
float overflow in the multiplication x * 2. Using the –double-is-64bits option,
a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)

Example shell script entry

1-17

1 Options Description

polyspace-cpp -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-cpp -target mcpu -pointer-is-32bits

-align [8|16|32]
This option is available with an mcpu generic target and some other specific
targets. It is used to set the largest alignment of all data objects to 4/2/1
byte(s), meaning a 32, 16 or 8 bit boundary respectively.

The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-cpp -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of more
than 2 bytes are used as struct members or array components, they are
aligned at 2 bytes boundaries.

Example shell script entry with a 16 bits specific alignment:

polyspace-cpp -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

1-18

Targets/Compilers

Example shell script entry with a 8 bits specific alignment:

polyspace-cpp -target mcpu -align 8

-OS-target OperatingSystemTarget
This option specifies the operating system target for PolySpace stubs.

Possible values are ’Solaris’, ’Linux’, ’VxWorks’, ’Visual’ and
’no-predefined-OS’.

This information allows the appropriate system definitions to be used during
preprocessing in order to analyze the included files properly. -OS-target
no-predefined-OS may be used in conjunction with -include and/or -D to give
all of the system preprocessor flags to be used at execution time. Details of
these may be found by executing the compiler for the project in verbose mode.

Default:

Solaris

Note Only the ’Linux’ include files are provided with PolySpace software
(see the include folder in the installation directory). Projects developed for use
with other operating systems may be analyzed by using the corresponding
include files for that OS. For instance, in order to analyze a VxWorks® project
it is necessary to use the option -I <<path_to_the_VxWorks_include_folder>>

Example shell script entry:

polyspace-cpp -OS-target linux
polyspace-cpp -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

-D compiler-flag
This option is used to define macro compiler flags to be used during
compilation phase.

1-19

1 Options Description

Only one flag can be used with each –D as for compilers, but the option can be
used several times as shown in the example below.

Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-cpp -D HAVE_MYLIB -D USE_COM1 ...

-U compiler-flag
This option is used to undefine a macro compiler flags

As for compilers, only one flag can be used with each –U, but the option can be
used several times as shown in the example below.

Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-cpp -U HAVE_MYLIB -U USE_COM1 ...

-include file1[,file2[,...]]
This option is used to specify files to be included by each C++ file involved in
the verification.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-cpp -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

1-20

Targets/Compilers

polyspace-cpp -include /the_complete_path/my_defines.h ...

-post-preprocessing-command "command"
When this option is used, the specified script file or command is run just
after the pre-processing phase on each source file. The script executes on
each preprocessed c files. The command should be designed to process the
standard output from pre-processing and produce its results in accordance
with that standard output.

Default:

No command.

Example Shell Script Entry – file name:

To replace the keyword “Volatile” with “Import”, you can type the following
command on a Linux workstation:

polyspace-cpp -post-preprocessing-command `pwd`/replace_keywords

where replace_keywords is the following script :

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

1-21

1 Options Description

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

%POLYSPACE_C%\Verifier\bin\polyspace-cpp.exe
-post-preprocessing-command
%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

-post-analysis-command <file_name> or "command"
When this option is used, the specified script file or command is executed
once the verification has completed.

The script or command is executed in the results directory of the verification.

Execution occurs after the last part of the verification. The last part of is
determined by the–to option.

Note Depending on the architecture used (notably when performing a server
verification), the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

1-22

Targets/Compilers

This example shows how to send an email to tip the client side off that his
verification has been ended. This example supposes that the mailx command
is available on the machine. So the command looks like:

polyspace-cpp -post-analysis-command `pwd`/end_email

where end_email is an appropriate Perl script.

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

%POLYSPACE_C%\Verifier\bin\polyspace-cpp.exe
-post-analysis-command
%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute_path>\end_emails

1-23

1 Options Description

Compliance with Standards

In this section...

“-dos” on page 1-24

“Embedded Assembler” on page 1-25

“-wchar-t-is-unsigned-long” on page 1-26

“-size-t-is-unsigned-long” on page 1-26

“-no-extern-C” on page 1-26

“-no-stl-stubs” on page 1-27

“-dialect DialectName” on page 1-27

“-wchar-t-is” on page 1-28

“-for-loop-index-scope” on page 1-28

“-ignore-pragma-pack” on page 1-29

“Visual Specific Options” on page 1-30

“Coding Rules Checker” on page 1-31

“-ignore-constant-overflows” on page 1-35

“-allow-undef-variables” on page 1-35

“-allow-negative-operand-in-shift” on page 1-36

“-Wall” on page 1-36

-dos

This option must be used when the contents of the include or source
directory comes from a DOS or Windows file system. It deals with upper/lower
case sensitivity and control characters issues.

Concerned files are:

• header files: all include dir specified (-I option)

1-24

Compliance with Standards

• source files: all sources files selected for the verification (-sources option)

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

into

#include "../my_test.h"

#include "../my_other_file.h"

Default:

disabled by default

Example Shell Script Entry:

polyspace-cpp -I /usr/include -dos -I ./my_copied_include_dir -D test=1

Embedded Assembler
PolySpace stops the execution when detecting assembler code and displays
an error message. It can continue the execution if it is requested by the user
with the option –discard-asm.

PolySpace ignores the assembler code by assuming that the assembler code
does not have any side effect on global variables. Delimiters for assembler
code to ignore can be recognized by PolySpace following C++ standard
specified asm declarations: __asm and __asm__.

-discard-asm
This option instructs the PolySpace verification to discard assembler code. If
this option is used, the assembler code should be modelled in c.

Default:

Embedded assembler is treated as an error.

1-25

1 Options Description

Example Shell Script Entry:

polyspace-cpp -discard-asm ...

-wchar-t-is-unsigned-long
This option forces the “underlying type” as defined in the C++ standard
to be unsigned long.

For example, sizeof(L’W’) will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.
Note that wchar_t will remain a different type from unsigned long unless
“-wchar-t-is typedef” is set or implied by the current dialect. The default
underlying type of wchar_t is unsigned short.

Example Shell Script Entry:

polyspace-cpp -wchar-t-is-unsigned-long ...

-size-t-is-unsigned-long
Indicates the expected typedef of size_t to the software; forces the size_t type
to be unsigned long. The default type of size_t is unsigned int.

Example Shell Script Entry: polyspace-cpp
-size-t-is-unsigned-long ...

-no-extern-C
Some functions may be declared inside an extern “C” { } bloc in some files and
not in others. Then, their linkage is not the same and it causes a link error
according to the ANSI standard.

Applying this option will cause PolySpace to ignore this error.

This permissive option may not solve all the extern C linkage errors.

Example Shell Script Entry:

polyspace-cpp -no-extern-C ...

1-26

Compliance with Standards

-no-stl-stubs
PolySpace provide an efficient implementation of part of the Standard library
(STL). This implementation may not be compatible with includes files of the
applications. In that case some linking errors could arise.

With this option PolySpace does not use this implementation of the STL.

Example Shell Script Entry:

polyspace-cpp -no-stl-stubs ...

-dialect DialectName
Specifies the dialect in which the code is written. Possible values are:

default, cfront2, cfront3, iso, gnu, visual, visual6, visual7.0,
visual7.1, and visual8.

visual6 activates dialect associated with code used for Microsoft Visual 6.0
compiler and visual activates dialect associated with Microsoft Visual 7.1
and subsequent.

If the dialect is visual (visual, visual6, visual7.0, visual7.1 and visual8)
the -OS-target option must be set to Visual.

If the dialect is visual, the options -dos, -OS-target Visual and
-discard-asm are set by default.

visual8 dialect activates support for Visual 2005 .NET specific compiler.
All Visual 2005 .NET given include files can compile both with the
-no-stl-stubs option and without it (recommended).

Note If you select the -jsf-coding-rules option and a dialect other than
iso or default, some JSF++ coding rules may not be completely checked.
For example, AV Rule 8: “All code shall conform to ISO/IEC 14882:2002(E)
standard C++.”

Default:

1-27

1 Options Description

default

Example Shell Script Entry:

polyspace-cpp -dialect visual8 ...

-wchar-t-is
This option forces wchar_t to be treated as a keyword as per the C++ standard
or as a typedef as with Microsoft Visual C++ 6.0/7.x dialects.

Possible values are ’keyword’ or ’typedef’:

• typedef is the default behavior when using -dialect option associated to
visual6, visual7.0 and visual7.1.

• keyword is the default behavior for all others dialects including visual8.

This option allows the default behavior implied by the PolySpace dialect
option to be overridden.

This option is equivalent to the Visual C++ /Zc:wchar and /Zc:wchar- options.

Default:

default (depends on -dialect value).

Example in shell script:

polyspace-cpp wchar-t-is typedef

-for-loop-index-scope
This option changes the scope of the index variable declared within a for loop.

Example:

for (int index=0; ...){};
index++; // index variable is usable (out) or not (in)
at this point

1-28

Compliance with Standards

Possible values are ’in’ and ’out’:

• out is the default for the -dialect option associated with values cfront2,
crfront3, visual6, visual7 and visual 7.1.

• in is the default for all other dialects, including visual8.

The C++ ANSI standard specifies the index be treated as ’in’.

This option allows the default behavior implied by the PolySpace dialect
option to be overridden.

This option is equivalent to the Visual C++ options /Zc:forScopeand
Zc:forScope-.

Default:

default (depends on –dialect value)

Example in shell script:

polyspace-cpp for-loop-index-scope in

-ignore-pragma-pack
C++ #pragma directives specify packing alignment for structure, union, and
class members. The -ignore-pragma-pack option allows these directives to be
ignored in order to prevent link errors.

PolySpace will stop the execution and display an error message if this option
is used in non visual mode or without dialect gnu (without -OS-target visual
or –dialect visual*). See also “Link messages” in the PolySpace Products
for C++ User’s Guide.

Example Shell Script Entry:

polyspace-cpp dialect visual ignore-pragma-pack ...

1-29

1 Options Description

Visual Specific Options

• “-import-dir directory” on page 1-30

• “-pack-alignment-value value” on page 1-30

• “-support-FX-option-results” on page 1-30

-import-dir directory
One directory to be included by #importdirective. This option must be used
with -OS-target visual or -dialect visual* (6, 7.0, 7.1 and 8). It gives the
location of *.tlh files generated by a Visual Studio compiler when encounter
#import directive on *.tlb files.

Example Shell Script Entry:

polyspace-cpp -dialect visual8 -import-dir /com1/inc ...

-pack-alignment-value value
Visual C++ /Zp option specifies the default packing alignment for a project.
Option -pack-alignment-value transfers the default alignment value to
PolySpace verification.

The argument value must be: 1, 2, 4, 8, or 16. Verification will halt and
display an error message with a bad value or if this option is used in non
visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Default:

8

Example Shell Script Entry:

polyspace-cpp dialect visual pack-alignment-value 4 ...

-support-FX-option-results
Visual C++ /FX option allows the partial translation of sources making use
of managed extensions to Visual C++ sources without managed extensions.

1-30

Compliance with Standards

Theses extensions are currently not taken into account by PolySpace and can
be considered as a limitation to analyze this kind of code.

Using /FX, the translated files are generated in place of the original ones in
the project, but the names are changed from foo.ext to foo.mrg.ext.

Option – support-FX-option-results allows the verification of a project
containing translated sources obtained by compilation of a Visual project
using the /FX Visual option. Managed files need to be located in the same
directory as the original ones and PolySpace will verify managed files instead
of the original ones without intrusion, and will permit you to remove part of
the limitations due to specific extensions.

PolySpace will stop the execution and display an error message if this option
is used in non visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Example Shell Script Entry:

polyspace-cpp dialect visual - support-FX-option-results

Coding Rules Checker

• “Check JSF C++ rules” on page 1-31

• “-jsf-coding-rules [all-rules | file_name]” on page 1-32

• “Check MISRA C++ rules” on page 1-33

• “-misra-cpp [all-rules | file_name]” on page 1-33

• “-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"” on page
1-34

Check JSF C++ rules
Specifies that PolySpace software checks for compliance with the Joint Strike
Fighter Air Vehicle C++ coding standards (JSF++:2005).

The results are included in the log file of the verification.

For more information, see “Checking JSF++ Coding Rules”.

1-31

1 Options Description

-jsf-coding-rules [all-rules | file_name]
Specifies which JSF++ coding rules to check.

• Keyword all-rules – Checks all available JSF++ rules using the default
configuration. Any violation of JSF++ rules is considered a warning.

• Option file_name – The name of an ASCII text file containing a list of
JSF++ rules to check.

Note If you specify -jsf-coding-rules, the -wall option is disabled.

Note If your project uses a dialect other than ISO, some JSF++ coding rules
may not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Format of the file:

<rule number> off|error|warning
is considered a comment.

Example:

JSF-CPP rules configuration file
1 off # disable AV Rule number 1
2 off # Not implemented
3 off # disable AV Rule 3
8 error # violation AV Rule 8 is error
9 warning # violation AV Rule 9 is only a warning
End of file

Default:

Disabled

Example shell script entry:

polyspace-cpp -jsf-coding-rules all-rules

1-32

Compliance with Standards

polyspace-cpp -jsf-coding-rules jsf.txt

Check MISRA C++ rules
Specifies that PolySpace software checks for compliance with the MISRA®

C++ coding standards (MISRA C++:2008).

The results are included in the log file of the verification.

For more information, see “Checking MISRA C++ Coding Rules”.

-misra-cpp [all-rules | file_name]
Specifies which MISRA C++ coding rules to check.

• Keyword all-rules – Checks all available MISRA C++ rules using the default
configuration. Any violation of MISRA C++ rules is considered a warning.

• Option file_name – Specifies the name of an ASCII text file containing a
list of MISRA C++ rules to check.

Note If you specify -misra-cpp, the -wall option is disabled.

Format of the file:

<rule number> off|error|warning
is considered a comment.

Example:

MISRA-C++ rules configuration file
Generated by PolySpace

0-1-1 warning
0-1-2 warning
0-1-7 warning
0-1-8 off
0-1-9 off
0-1-10 warning

1-33

1 Options Description

0-1-11 off
0-1-12 off
1-0-1 error
1-0-2 off # Not implemented
1-0-3 off # Not implemented
2-2-1 off # Not implemented
2-3-1 warning
2-5-1 warning
2-7-1 warning

End of file

Default:

Disabled

Example shell script entry:

polyspace-cpp -misra-cpp all-rules

polyspace-cpp -misra-cpp misra.txt

-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"
This option prevents the coding rules checker from checking a given list of
files or directories (all files and subdirectories under selected directory). This
option is useful if you use headers that do not conform with JSF++ or MISRA
C++ standards. A warning is displayed if one of the files does not exist.

This option is enabled only when you specify -jsf-coding-rules or
-misra-cpp.

Example shell script entry :

polyspace-cpp -jsf-coding-rules jsf.txt includes-to-ignore
"c:\usr\include"

1-34

Compliance with Standards

-ignore-constant-overflows
This option specifies that the verification should be permissive with regards
to overflowing computations on constants. Note that it deviates from the
ANSI C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result irrespective of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-cpp -ignore-constant-overflows ...

-allow-undef-variables
When this option is used, PolySpace will continue in case of linkage errors
due to undefined global variables. For instance when this option is used,
PolySpace will tolerate a variable always being declared as extern

Default:

Undefined variables causes PolySpace to stop.

Example Shell Script Entry:

polyspace-cpp -allow-undef-variables ...

1-35

1 Options Description

-allow-negative-operand-in-shift
This option allows a shift operation on a negative number.

According to the ANSI standard, such a shift operation on a negative number
is illegal – for example,

-2 << 2

With this option in use, PolySpace considers the operation to be valid. In the
previous example, the result would be
-2 << 2 = -8

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-cpp -allow-negative-operand-in-shift ...

-Wall
Force the C++ compliance phase to print all warnings.

Note If you specify -jsf-coding-rules, this option is disabled.

Default:

By default, only warnings about compliance across different files are printed.

Example Shell Script Entry:

polyspace-cpp -Wall ..

1-36

PolySpace Inner Settings

PolySpace Inner Settings

In this section...

“-unit-by-unit” on page 1-37

“-unit-by-unit-common-source filename” on page 1-38

“-main sub_program_name” on page 1-38

“Generate a Main Using a Given Class” on page 1-39

“-main-generator-calls” on page 1-42

“General options for the generation of mains” on page 1-43

“-data-range-specifications file_name” on page 1-46

“-no-automatic-stubbing” on page 1-47

“-ignore-float-rounding” on page 1-47

“-detect-unsigned-overflows” on page 1-49

“-enum-type-definition” on page 1-50

“-machine-architecture” on page 1-50

“-max-processes” on page 1-51

“-extra-flags option-extra-flag” on page 1-52

“-cpp-extra-flags flag” on page 1-52

“-il-extra-flags flag” on page 1-52

-unit-by-unit
This option creates a separate verification job for each source file in the
project.

Each file is compiled, sent to the PolySpace Server, and verified individually.
Verification results can be viewed for the entire project, or for individual units.

This option is only available for server verifications. It is not compatible with
multitasking options such as -entry-points.

Default:

1-37

1 Options Description

Not selected

Example Shell Script Entry:

polyspace-cpp -unit-by-unit

-unit-by-unit-common-source filename
Specifies a list of files to include with each unit verification. These files are
compiled once, and then linked to each unit before verification. Functions
not included in this list are stubbed.

Default:

None

Example Shell Script Entry:

polyspace-cpp -unit-by-unit-common-source
c:/polyspace/function.cpp

-main sub_program_name
The option specifies the qualified name of the main subprogram when a
visual –OS-target is selected. This procedure will be analyzed after class
elaboration, and before tasks in case of a multitask application or in case of
the -entry-points usage.

Possible values are:

main, _tmain, wmain, _tWinMain, wWinMain, WinMain and DllMain.

However, if the main subprogram does not exist and the option
-main-generator is not set, PolySpace will stop the verification with an error
message.

Default:

main

1-38

PolySpace Inner Settings

Example Shell script entry:

polyspace-cpp -main WinMain OS-target visual

Generate a Main Using a Given Class

• “-class-analyzer” on page 1-39

• “-class-only” on page 1-40

• “-class-analyzer-calls” on page 1-40

• “-no-constructors-init-check” on page 1-41

-class-analyzer
PolySpace for C++ is a class analyzer. If a main program is present in the
set of files that you submit for verification then the verification proceeds
with that main program. Otherwise, you can choose not to provide a main
program and select a single class instead.

If MyclassName does not exist in the application, the verification will come to
a halt. All public and protected function members declared within the class,
whether they are called within the code or not, will be analyzed separately
and called by a generated main.

This generated main is not code compliant but is visible in the graphical
user interface within the _polyspace_main.cpp file. Note that it initializes
all global variables to random (see “How the Class Analyzer Works”in the
PolySpace Products for C++ User’s Guide).

Note This option cannot be used with the option
-function-called-before-main.

Example shell script entry:

polyspace-cpp class-analyzer MyClass
polyspace-cpp class-analyzer MyNamespace::MyClass

1-39

1 Options Description

-class-only
This option can only be used with the option –class-analyzer. If the
-class-analyzer option is not used, verification stops and displays an error
message. With the option –class-only, only functions associated to MyClass
are verified. All functions out of class scope are automatically stubbed even
though they are defined in the source code.

Default:

disable

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-only...

-class-analyzer-calls
Specifies which functions are called by the generated main.

This option can only be used with the option –class-analyzer. If the
-class-analyzer option is not used, verification stops and displays an error
message.

There are three options:

• Default – The generated main calls all public and protected function
members declared within the class, whether called in the code or not. Every
eligible function is called directly by the generated main.

• Unused – The generated main calls only those functions not called by
another eligible function. Members inherited from a base class are not
verified.

• Inherited – The generated main calls the functions of the named class as
well as functions inherited from the base class that are not called within
the analyzed class. Inherited methods are called in the child context,
meaning that the generated main does not make explicit calls to the
parent’s constructor and destructor.

1-40

PolySpace Inner Settings

Note If the hierarchy contains the same class more than once, only the
first instance of the class is analyzed, and the software displays a warning
message.

Eligible functions are:

• Public and protected methods of analyzed class

• Existing constructors of analyzed class

• Destructor of analyzed class

• Existing copy constructors of analyzed class

Default:

Default

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-analyzer-calls
unused ...

-no-constructors-init-check
By default, PolySpace checks for member initialization just after object
construction and initialization with -function-called-before-main when
using -class-analyzer.

This option can only be used with class-analyzer. If the option
-class-analyzer is not used, verification stops and displays an error
message.

Without this option, in the generated main in __polyspace_main.cpp file,
you will find some added code checks like on the simple example below using
-class-analyzer A options:

class A {
public: int i ; int *j ; int k; int l;

A() : i(0), j(0), k(0) { ; }

1-41

1 Options Description

A(int a) : i(a), k(0) { ; }
void foo() {

i = 1; i++;
j = (int *) 0x0100; j++;
l = 1; l++;}

};

In __polyspace_main.cpp after a call to the constructor(s) and function
called before main:

check_NIV(__polyspace__A__this->i); // green NIV
check_NIP(__polyspace__A__this->j); // orange NIP
check_NIV(__polyspace__A__this->k);/* member has been detected as never

// grey NIV
check_NIV(__polyspace__A__this->l); // red NIV

• i is always initialized, read and written in foo — green NIV

• j is initialized in one constructor only, read and written in foo — orange
NIP

• k is always initialized, but never read and written outside the constructors
— grey

• l is never initialized in the constructors — red NIV

When this option is applied, no further check of member variables’
initialization is made.

Default:

Check is made for member scalars, floats and pointer member variables.

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass no-constructors-init-check
...

-main-generator-calls
This option is used with the -main-generator option, to specify the functions
to be called.

1-42

PolySpace Inner Settings

Note that this option is protected by a license.

Eligible functions:

Every function declared outside a class and defined in the source code to
analyze, is considered as eligible when using the option.

The list of functions contains a list of short name (name without signature)
separated by comas. If the name of a function from the list is associated to
a function not defined in the source code, PolySpace stops and displays an
error message. If the name of a function from the list is ambiguous, all the
functions with the same short name are called. If a function from the list does
not belong or is not eligible, PolySpace stops and displays an error message.
This error message is put in the log file.

Default values:

• none – No function is called. This can be used with a multitasking
application without a main, for instance.

• unused (default) – Call all functions not already called within the code.
Inline functions will not be called by the generated main.

• all – all functions except inline will be called by the generated main.

• custom – Only functions present in the list are called from the main. Inline
functions can be specified in the list and will be called by the generated
main.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called with
custom value: -main-generator-calls custom=my_inlined_func.

Example:

polyspace-cpp -main-generator -main-generator-calls
custom=function_1,function_2

General options for the generation of mains

• “-function-called-before-main” on page 1-44

1-43

1 Options Description

• “-main-generator-writes-variables” on page 1-45

-function-called-before-main
This option is used with the main generator option –main-generator-calls to
specify a function which will be called before all selected functions in the main.

Note This option cannot be used with the option class-analyzer.

Eligible functions:

Every function or method defined in the source code to analyze is considered
as eligible when using the option.

If the function or method is not overloaded, simply specify the name of the
function. If the function or method is overloaded, you must specify the full
prototype, including the type of argument (but not the name of argument).

If the function is not defined in the source code, the verification stops and
displays an error message.

Note If the function name you provide is ambiguous (there is another
function of the same name in another class) the verification stops and displays
an error message listing the specific names of all possible functions. You can
avoid this error by copying the correct name from the error message and
enclosing it with double quotes.

Unit-by-unit verification:

When performing unit-by-unit verification (using use the option
-unit-by-unit) the behavior of -function-called-before-main changes
depending on the type of init function you specify.

When you set the option -function-called-before-main in unit-by-unit
mode:

1-44

PolySpace Inner Settings

• If the init function is an out of class function, it is called at the beginning
of the generated main (before the "if random" block of classes).

• If the init function is a method (function member of a class), it is called
after all constructor calls of the corresponding class. If several classes are
present in the unit, the software displays a warning explaining that the
function called before main will be called only with the concerned class.

Example:

polyspace-cpp -main-generator-calls unused
-function-called-before-main MyFunction

-main-generator-writes-variables
This option is used with the main generator options –class-analyzer and
–main-generator-calls to dictate how the generated main will initialize global
variables.

Settings available:

• uninit – main generator writes random on not initialized global variables.

• none – no global variable will be written by the main.

• public – every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• all – every variable is assigned a “random” value, representing the full
range of possible values

• custom – only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example

polyspace-cpp class-analyzer MyClass
-main-generator-writes-variables uninit

polyspace-cpp -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

1-45

1 Options Description

-data-range-specifications file_name
This option permits the setting of specific data ranges for a list of given
global variables.

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)”in the PolySpace Products for C++ User’s
Guide.

File format:

The file filename contains a list of global variables with the below format:

variable_name val_min val_max <init|permanent|globalassert>

Variables scope:

Variables concern external linkage, const variables and not necessary a
defined variable (i.e. could be extern with option -allow-undef-variables).

Note Only one mode can be applied to a global variable.

No checks are added with this option except for globalassert mode.

Some warning can be displayed in log file concerning variables when format
or type is not in the scope.

Default:

Disable.

Example shell script entry:

polyspace-c -data-range-specifications range.txt ...

1-46

PolySpace Inner Settings

-no-automatic-stubbing
By default, PolySpace automatically stubs all functions. When this option is
used, the list of functions to be stubbed is displayed and the verification is
stopped.

Benefits:

This option may be used where

• The entire code is to be provided, which may be the case when analyzing
a large piece of code. When the verification stops, it means the code is
not complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
verification.

Default:

All functions are stubbed automatically

-ignore-float-rounding
Without this option, PolySpace rounds floats according to the IEEE 754
standard: simple precision on 32-bits targets and double precision on target
which define double as 64-bits. With the option, exact computation is
performed.

Example

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f;
8 // reached when -ignore-float-rounding is used or not
9 }
10 else {
11 assert (1);

1-47

1 Options Description

12 f = 1.0F * f;
13 // reached when compiled under Visual and when
-ignore-floatrounding is not used
14 }
15 }

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
PolySpace while they are not (or are) depending of the compiler and target. So
it can potentially give approximate results (green should be unproven). This
option has an impact on OVFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f; // Overflow never occurs because f <= FLT_MAX.
8 // reached when -ignore-float-rounding is used
9 }
10 else {
11 assert (1);
12 f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)
13 // reached when -ignore-float-rounding is not used
14 }
15 }

Default:

IEEE 754 rounding under 32 bits and 64 bits.

1-48

PolySpace Inner Settings

Example Shell Script Entry:

polyspace-cpp -ignore-float-rounding ...

-detect-unsigned-overflows
When this option is selected, verification is more strict with overflowing
computations on unsigned integers than the ANSI® C standard requires.

The ANSI C standard states that promotion occurs for logic, bitwise and
arithmetic operators. For char, short, and int types, variables are implicitly
cast into integers before the operation. Then, after the operation, the
variables are downcast into the original type.

Consider the examples below.

Example 1

Using this option, the following example generates an error:

unsigned char x;
x = 255;
x = x+1; //overflow due to this option

Without this option, however, the example does not generate an error.

unsigned char x;
x = 255;
x = x+1; // turns x into 0 (wrap around)

Example 2

Using this option, the following example generates an error:

unsigned char Y=1;
Y = ~Y; //overflow because of type promotion

In this example:

1 Y is coded as an unsigned char: 000000001

1-49

1 Options Description

2 Y is promoted to an integer: 00000000 00000000 00000000 00000001

3 The operation "~" is performed, making Y: 11111111 11111111 11111111
11111110

4 The integer is downcast to an unsigned char, causing an overflow.

Example Shell Script Entry:

polyspace-cpp -detect-unsigned-overflows ...

-enum-type-definition
Allows the verification to use different base types to represent an enumerated
type, depending on the enumerator values and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

• defined-by-standard – Uses the first type that can hold all of the
enumerator values from the following list: signed int, unsigned int,
signed long, unsigned long, signed long long, unsigned long long

• auto-signed-first - Uses the first type that can hold all of the enumerator
values from the following list: signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

• auto-unsigned-first - Uses the first type that can hold all of the
enumerator values from the following lists:

- If enumerator values are all positive: unsigned char, unsigned short,
unsigned int, unsigned long, unsigned long long.

- If one or more enumerator values are negative: signed char, signed
short, signed int, signed long, signed long long.

-machine-architecture
This option specifies whether verification runs in 32 or 64-bit mode.

1-50

PolySpace Inner Settings

Note You should only use the option -machine-architecture 64 for
verifications that fail due to insufficient memory in 32 bit mode. Otherwise,
you should always run in 32–bit mode.

Available options are:

• -machine-architecture auto – Verification always runs in 32-bit mode.

• -machine-architecture 32 – Verification always runs in 32-bit mode.

• -machine-architecture 64 – Verification always runs in 64-bit mode.

Default:

auto

Example Shell Script Entry:

polyspace-cpp -machine-architecture auto

-max-processes
This option specifies the maximum number of processes that can run
simultaneously on a multi-core system. The valid range is 1 to 128.

Note To disable parallel processing, set: -max-processes 1.

Default:

4

Example Shell Script Entry:

polyspace-cpp -max-processes 1

1-51

1 Options Description

-extra-flags option-extra-flag
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by PolySpace Support as necessary for your
verifications.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-cpp -extra-flags -param1 -extra-flags -param2

-cpp-extra-flags flag
It specifies an expert option to be added to a PolySpace C++ verification. Each
word of the option (even the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by PolySpace support as necessary.

Default:

no extra flags.

Example Shell Script Entry:

polyspace-cpp -cpp-extra-flags -stubbed-new-may-return-null

-il-extra-flags flag
It specifies an expert option to be added to a PolySpace C++ verification. Each
word of the option (even the parameters) must be preceded by -il-extra-flags.

These flags will be given to you by PolySpace support as necessary.

Default:

no extra flags.

1-52

PolySpace Inner Settings

Example Shell Script Entry:

polyspace-cpp -il-extra-flags flag

1-53

1 Options Description

Precision/Scaling

In this section...

“-quick (Deprecated)” on page 1-54

“-O(0-3)” on page 1-55

“-from verification-phase” on page 1-56

“-to verification-phase” on page 1-57

“-context-sensitivity "proc1[,proc2[,...]]"” on page 1-58

“-context-sensitivity-auto” on page 1-58

“-path-sensitivity-delta number” on page 1-59

“-k-limiting number” on page 1-59

“-inline "proc1[,proc2[,...]]"” on page 1-60

“-respect-types-in-globals” on page 1-61

“-respect-types-in-fields” on page 1-61

“-less-range-information” on page 1-62

“-no-pointer-information” on page 1-63

“Tuning Precision and Scaling Parameters” on page 1-64

-quick (Deprecated)

Note This option is deprecated in R2009a and later releases.

quick mode is obsolete and has been replaced with verification PASS0.
PASS0 takes somewhat longer to run, but the results are more complete.
The limitations of quick mode, (no NTL or NTC checks, no float checks,
no variable dictionary) no longer apply. Unlike quick mode, PASS0 also
provides full navigation in the Viewer.

This option is used to select a very fast mode for PolySpace .

1-54

Precision/Scaling

Benefits
This option allows results to be generated very quickly. These are suitable
for initial verification of red and gray errors only, as orange checks are too
plentiful to be relevant using this option.

Limitations

• No NTL or NTC are displayed (non termination of loop/call)

• The variable dictionary is not available

• No check is performed on floats

• The call tree is available but navigation is not possible

• Orange checks are too plentiful to be relevant

-O(0-3)
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more verification time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during verification.

The MathWorks recommends you begin with the lowest precision level. Red
errors and gray code can then be addressed before relaunching PolySpace
verification using higher precision levels.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means higher verification time

- -O0 corresponds to static interval verification.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

1-55

1 Options Description

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long verification time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-cpp -O1 -to pass4 ...

-from verification-phase
This option specifies the verification phase to start from. It can only be used
on an existing verification, possibly to elaborate on the results that you have
already obtained.

For example, if a verification has been completed -to pass1, PolySpace can be
restarted -from pass1 and hence save on verification time.

The option is usually used in a verification after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Note

• This option can only be used for client verifications. All server verifications
start from scratch.

• Unless the scratch option is used, this option can be used only if the
previous verification was launched using the option -keep-all-files .

• This option cannot be used if you modify the source code between
verifications.

1-56

Precision/Scaling

Default :

From scratch

Example Shell Script Entry :

polyspace-cpp -from c-to-il ...

-to verification-phase
This option specifies the verification phase after which the verification will
stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading
to "finding more bugs" with the code.

• A higher integration level also means longer verification time

Possible values:

• cpp-compliance or “C++ source compliance checking” (Reaches the
compilation phase)

• cpp-normalize or “C++ source normalization” (Reaches the
normalization phase)

• cpp-link or “C++ Link” (Reaches the link phase)

• cpp-to-il or “C++ to Intermediate Language” (Reaches the
transformation to intermediate language)

• pass0 or “Software Safety Analysis level 0”

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

1-57

1 Options Description

• pass4 or "Software Safety Analysis level 4"

• other (stop verification after level 20)

Note If you use -to other then PolySpace will continue until you stop it
manually (via "PolySpace Install Directory"/bin/kill-rte-kernel "Results
directory"/"log file name") or stops until it has reached pass20.

Default:

pass4

Example Shell Script Entry:

polyspace-cpp -to "Software Safety Analysis level 3"...

polyspace-cpp -to pass0 ...

-context-sensitivity "proc1[,proc2[,...]]"
This option allows the precise verification of a procedure with regards to the
discrete calls to it in the analyzed code.

Each check inside the procedure is split into several sub-checks depending
on the context of call. Therefore if a check is red for one call to the procedure
and green for another, both colors will be revealed.

This option is especially useful is a problem function is called from a multitude
of places.

-context-sensitivity-auto
This option is similar to the -context-sensitivity option, except that the system
automatically chooses the procedures to be considered.

Usually, the ten functions which are the most called are automatically
selected.

1-58

Precision/Scaling

-path-sensitivity-delta number
This option is used to improve interprocedural verification precision within
a particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer verification time.

Consider two verifications, one with this option set to 1 (with), and one
without this option (without)

• a level 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

• a level 1 analysis in (with) can last x times more than a cumulated level
1+2 analysis from (without). "x" might be exponential.

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-cpp -path-sensitivity-delta 1 ...

-k-limiting number
This is a scaling option to limit the depth of verification into nested structures
during pointer verification (see Tuning Precision and Scaling Parameters).

This option is only available for PolySpace C and C++.

1-59

1 Options Description

Default:

There is no fixed limit.

Example Shell Script Entry:

polyspace-cpp -k-limiting 1 ...

In this example above, verification will be precise to only one level of nesting.

-inline "proc1[,proc2[,...]]"
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention:

procedure1_pst_inlined_nb

where nb is a unique number giving the total number of inlined procedures.

Inlining allows the number of aliases in a given procedure to be reduced,
and it may also improve precision.

It can also allow you to more easily locate run-time errors that relate the copy
or set of a large structure to a smaller one (NTC, for instance).

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided
by the alias verification (the log file can sometimes provide this kind of
information).

• This option should not be used on main, task entry points and critical
section entry points.

• When using this option with a method of a class, all overload of the method
will apply to the inline.

1-60

Precision/Scaling

Example Shell Script Entry:

polyspace-cpp inline myclass::myfunc …

-respect-types-in-globals
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace assumes that global variables not declared as containing
pointers are never used for holding pointer values. This option should only
be used with Type-safe code, when it does not cause a loss of precision. See
also -respect-types-in-fields.

In the following example, we will lose precision using the
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
(int)x = 1; // x contains address of y
assert (y == 0); // green with the option

}

PolySpace will not take care that x contains the address of y resulting a
green assert.

Default:

PolySpace assumes that global variables may contain pointer values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-globals ...

-respect-types-in-fields
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace assumes that structure fields not declared as containing

1-61

1 Options Description

pointers are never used for holding pointer values. This option should only
be used with Type-safe code, when it does not cause a loss of precision. See
also -respect-types-in-globals .

In the following example, we will lose precision using option
respect-types-in-fields option:

struct {
unsigned x;
int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
tmp = 1; / write 1 into y */
assert(y==0);

}

PolySpace will not take care that S1.x contains the address of y resulting a
green assert.

Default:

PolySpace assumes that structure fields may contain pointer values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-fields ...

-less-range-information
Limits the amount of range information displayed in verification results.

When you select this option, the software provides range information on
assignments, but not on reads and operators.

1-62

Precision/Scaling

In addition, selecting this option enables the no-pointer-information
option. See “-no-pointer-information” on page 1-63.

Computing range information for reads and operators may take a long time.
Selecting this option can reduce verification time significantly. Consider the
following example:

x = y + z;

If you do not select this option (the default), the software displays range
information when you place the cursor over x, y, z, or +. However, if you
select this option, the software displays range information only when you
place the cursor over x.

Default:

Disabled.

Example Shell Script Entry :

polyspace-cpp -less-range-information

-no-pointer-information
Stops the display of pointer information in verification results.

When you select this option, the software does not provide pointer information
through tooltips. As computing pointer information may take a long time,
selecting this option can significantly reduce verification time.

Consider the following example:

x = *p;

If you do not select this option (the default), the software displays pointer
information when you place the cursor on p or *. If you select this option, the
software does not display pointer information.

Default:

1-63

1 Options Description

Disabled.

Example Shell Script Entry :

polyspace-cpp -no-pointer-information

Tuning Precision and Scaling Parameters

Precision versus Time of Verification
There is a compromise to be made to balance the time required to obtain
results, and the precision of those results. Consequently, launching PolySpace
with the following options will allow the time taken for verification to be
reduced but will compromise the precision of the results. It is suggested
that the parameters should be used in the sequence shown - that is, if the
first suggestion does not increase the speed of verification sufficiently then
introduce the second, and so on.

• switch from -O2 to a lower precision;

• set the -respect-types-in-globals and -respect-types-in-fields options;

• set the -k-limiting option to 2, then 1, or 0;

• stub manually missing functions which write into their arguments.

Precision versus Code Size
PolySpace can make approximations when computing the possible values
of the variables, at any point in the program. Such an approximation will
always use a superset of the actual possible values.

For instance, in a relatively small application, PolySpace might retain very
detailed information about the data at a particular point in the code, so that
for example the variable VAR can take the values { -2; 1; 2; 10; 15; 16; 17; 25
}. If VAR is used to divide, the division is green (because 0 is not a possible
value). If the program being analyzed is large, PolySpace would simplify the
internal data representation by using a less precise approximation, such
as [-2; 2] U {10} U [15 ; 17] U {25} . Here, the same division appears as an
orange check.

1-64

Precision/Scaling

If the complexity of the internal data becomes even greater later in the
verification, PolySpace might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (O0, O2), PolySpace will adjust the
level of simplification:

• -O0: shorter computation time. You only need to focus on red and gray
checks.

• -O2: less orange warnings.

• -O3: less orange warnings and bigger computation time.

1-65

1 Options Description

MultiTasking (PolySpace Server for C/C++ Only)

In this section...

“-entry-points str1[,str2[,...]]” on page 1-66

“-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"” on page 1-66

“-temporal-exclusions-file file_name” on page 1-67

Note Concurrency options are not compatible with -main-generator options.

-entry-points str1[,str2[,...]]
This option is used to specify the tasks/entry points to be analyzed by
PolySpace, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Format:

• All tasks must have the prototype “void any_name() .

• It is possible to declare a member function as an entry point of a verification,
only and only if the function is declared “static void task_name()”.

Example Shell Script Entry:

polyspace-cpp -entry-points class::task_name,taskname,proc1,proc2

-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

1-66

MultiTasking (PolySpace Server for C/C++ Only)

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with
list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,
with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Limitation:

• Name of procedure accept only void any_name() as prototype.

• The beginning and the end of the critical section need to be defined in same
block of code.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-cpp -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

-temporal-exclusions-file file_name
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Default:

No temporal exclusions.

1-67

1 Options Description

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-cpp -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

1-68

Specific Batch Options

Specific Batch Options

In this section...

“-server server_name_or_ip[:port_number]” on page 1-69

“-sources-list-file file_name” on page 1-70

“-v | -version” on page 1-70

“-h[elp]” on page 1-70

-server server_name_or_ip[:port_number]
Using polyspace-remote[-desktop]-[ada] [server [name or IP
address][:<port number>]] allows you to send a verification to a specific or
referenced PolySpace server.

Note If the option –server is not specified, the default server referenced in
the PolySpace-Launcher.prf configuration file will be used as server.

When a –server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-desktop-cpp server 192.168.1.124:12400

polyspace-remote-cpp

polyspace-remote-cpp server Bergeron

1-69

1 Options Description

-sources-list-file file_name
This option is only available in batch mode. The syntax of file_name is the
following:

• One file per line.

• Each file name includes its absolute or relative path.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"

polyspace-cpp -sources-list-file "/home/poly/files.txt"

-v | -version
Display the PolySpace version number.

Example Shell Script Entry:

polyspace-cpp v

It will show a result similar to:

PolySpace r2008a

Copyright (c) 1999-2008 The Mathworks Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-cpp h

1-70

2

Check Descriptions

• “Check Categories” on page 2-2

• “Colored Source Code for C++” on page 2-10

2 Check Descriptions

Check Categories
This section presents all categories of checks that PolySpace software verifies.
These checks are classified into acronyms. Each acronym represents one or
more verifications made by PolySpace software. The list of acronyms, checks
and associated colored messages are listed in the following tables.

In this section...

“Acronyms associated to C++ specific constructions:” on page 2-2

“Acronym Not Related to C++ Constructions (Also Used for C Code):” on
page 2-7

Acronyms associated to C++ specific constructions:

Category Acronym Green Gray

function returns a
value

FRV function returns a value Unreachable check:
function returns a value

non null
this-pointer

NNT this-pointer [of f] is not null Unreachable check:
this-pointer [of f] is not
null

CPP array size is strictly positive Unreachable check: array
size is strictly positive

CPP typeid argument is correct Unreachable check: typeid
argument is correct

CPP dynamic_cast on pointer is
correct

Unreachable check:
dynamic_cast on pointer is
correct

CPP dynamic_cast on reference
is correct

Unreachable check:
dynamic_cast on reference
is correct

C++ related
instructions

INF Informative check: f is
implicitly called

Informative check: implicit
call of f is unreachable

2-2

Check Categories

Category Acronym Green Gray

OOP call of virtual function [f] is
not pure

Unreachable check: call of
pure virtual function [f]

OOP this-pointer type [of f] is
correct

Unreachable check:
this-pointer type [of f]
is correct

INF Informative check: f is
called if this-pointer is of
type T

Informative check: call of
f depending on this type is
unreachable

OOP pointer to member function
points to a valid member
function

Unreachable check: pointer
to member function points
to a valid member function

OOP Unreachable check: call to
no function Information

INF Informative check: f is
potentially called through
pointer to member function

Informative check:
potential call to f through
pointer to member function
is unreachable

INF Informative check: f is
called during construction
of T

Informative check: call of f
during construction of T is
unreachable

Display of errors
that relate to
Object Oriented
Programming and
inheritance

INF Informative check: f is
called during destruction of
T

Informative check: call of
f during destruction of T is
unreachable

EXC exception raised as specified
in the throw list

Unreachable check:
exception raised as specified
in the throw list

EXC catch parameter
construction does not
throw

Unreachable check: catch
parameter construction
does not throw

EXC dynamic initialization does
not throw

Unreachable check:
dynamic initialization
does not throw

Display of errors
that relate to
exception handling

2-3

2 Check Descriptions

Category Acronym Green Gray

EXC destructor or delete does not
throw

Unreachable check:
destructor or delete does not
throw

EXC main, task or C library
function does not throw

Unreachable check: main,
task or C library function
does not throw

EXC call [to f] does not throw Unreachable check: call [to
f] does not throw

EXC function does not throw Unreachable check:
function does not throw

EXC expression value is not
EXCEPTION_CONTINUE_
EXECUTION

Unreachable check:
expression value is not
EXCEPTION_CONTINUE_
EXECUTION

EXC Unreachable check: throw
is not allowed with option
-no-exception

Category Acronym Red Orange

function returns a
value

FRV Error: function does not
return a value

Warning: function may not
return a value

non null
this-pointer

NNT Error: this-pointer [of f] is
null

Warning: this-pointer [of f]
may be null

2-4

Check Categories

Category Acronym Red Orange

CPP Error: array size is not
strictly positive

Warning: array size may not
be strictly positive

CPP Error: incorrect typeid
argument

Warning: typeid argument
may be incorrect

CPP Error: incorrect
dynamic_cast on pointer
(verification continues using
a null pointer)

Warning: dynamic_cast on
pointer may be incorrect

CPP Error: incorrect dynamic
cast on reference

Warning: dynamic_cast on
reference may be incorrect

C++ related
instructions

INF

OOP Error: call of pure virtual
function [f]

Warning: call of virtual
function [f] may be pure

OOP Error: incorrect this-pointer
type [of f]

Warning: this-pointer type
of [f] may be incorrect

INF

OOP Error: pointer to member
function is null or points to
an invalid member function

Warning: pointer to member
function may be null or
point to an invalid member
function

OOP Internal PolySpace error:
please contact support

INF

INF

Display of errors
that relate to
Object Oriented
Programming and
inheritance

INF

2-5

2 Check Descriptions

Category Acronym Red Orange

EXC Error: exception raised is
not specified in the throw
list

Warning: exception raised
may not be specified in the
throw list

EXC Error: throw during catch
parameter construction

Warning: possible throw
during catch parameter
construction

EXC Error: throw during
dynamic initialization

Warning: possible
throw during dynamic
initialization

EXC Error: throw during
destructor or delete

Warning: possible throw
during destructor or delete

EXC Error: main, task or C
library function throws

Warning: main, task or C
library function may throw

EXC Error: call [to f] throws
(verification jumps to
enclosing handler)

Warning: call [to f] may
throw

EXC Error: function throws
(verification jumps to
enclosing handler)

Warning: function may
throw

EXC Error: expression value is
EXCEPTION_CONTINUE_
EXECUTION (limitation)

Warning: expression
value may be
EXCEPTION_CONTINUE_
EXECUTION (limitation)

Display of errors
that relate to
exception handling

EXC Error: throw is not allowed
with option -no-exception

2-6

Check Categories

Acronym Not Related to C++ Constructions (Also
Used for C Code):

Category Acronym Green Gray

Out of bound array
index

OBAI Array index is within its
bounds

Unreachable check: out of
bounds array index error

Zero division ZDV Unreachable check:

Non-initialized
variable

NIV
local/other

[local] variable is initialized Unreachable check:

scalar or float
overflows

OVFL Unreachable check: variable
overflow error

Illegal dereference
pointer

IDP Reference refers to a valid
object

Unreachable check: invalid
reference

Correctness
condition

COR Function pointer must point
to a valid function

Unreachable check:
Function pointer must
point to a valid function

COR

COR

COR

Shift amount out of
bounds

SHF Scalar shift amount is
within its bounds

Unreachable check: shift
error

SHF

Non initialized
pointer

NIP Reference is initialized Unreachable check:
non-initialized reference

user assertion
failures

ASRT User assertion is verified Unreachable check: user
assertion error

non termination of
call

NTC

non termination of
loop

NTL

Unreachable check UNR Unreachable code

2-7

2 Check Descriptions

Category Acronym Red Orange

Out of bound array
index

OBAI Out of bound array Array index may be outside
its bounds

Zero division ZDV [scalar | float] division by
zero occurs

[scalar | float] division by
zero may occur

Non-initialized
variable

NIV
local/other

[local] variable is not
initialized

[local] variable may not
initialized

scalar or float
overflows

OVFL

Illegal dereference
pointer

IDP Reference refers to an
invalid object

Reference may not refer to
a valid object

Correctness
condition

COR Function pointer must point
to a valid function

Function pointer may point
to a valid function

COR wrong type for argument of
call to function

COR wrong number of arguments
for call to function

COR Array conversion must not
extend range

Shift amount out of
bounds

SHF Scalar shift amount is
outside its bounds

SHF Left operand of left shift is
negative

Non initialized
pointer

NIP Reference is not initialized
Reference may be
non-initialized

user assertion
failures

ASRT User assertion fails User assertion may fail

non termination of
call

NTC [f] call never terminates

2-8

Check Categories

Category Acronym Red Orange

non termination of
loop

NTL non termination of loop

Unreachable check UNR

2-9

2 Check Descriptions

Colored Source Code for C++

In this section...

“Function Returns a value: FRV” on page 2-11

“Non Null this-pointer: NNT” on page 2-12

“Positive Array Size: CPP” on page 2-14

“Incorrect typeid Argument: CPP” on page 2-15

“Incorrect dynamic_cast on Pointer: CPP” on page 2-16

“Incorrect dynamic_cast on Reference: CPP” on page 2-18

“Invalid Pointer to Member: OOP” on page 2-19

“Call of Pure Virtual Function: OOP” on page 2-20

“Incorrect Type for this-pointer: OOP” on page 2-21

“Potential Call to: INF” on page 2-24

“Non-Initialized Variable: NIV/NIVL” on page 2-26

“Non-Initialized Pointer: NIP” on page 2-27

“User Assertion Failure: ASRT” on page 2-28

“Overflows and Underflows” on page 2-30

“Scalar or Float Division by zero: ZDV” on page 2-34

“Shift Amount is Outside its Bounds: SHF” on page 2-35

“Left Operand of Left Shift is Negative: SHF” on page 2-36

“POW (Deprecated)” on page 2-38

“Array Index is Outside its Bounds: OBAI” on page 2-38

“Function Pointer Must Point to a Valid Function: COR” on page 2-39

“Wrong Number of Arguments: COR” on page 2-40

“Wrong Type of Argument: COR” on page 2-41

“Pointer is Outside its Bounds: IDP” on page 2-42

“Function throws: EXC” on page 2-50

“Call to Throws: EXC” on page 2-52

2-10

Colored Source Code for C++

In this section...

“Destructor or Delete Throws: EXC” on page 2-54

“Main, Tasks or C Library Function Throws: EXC” on page 2-56

“Exception Raised is Not Specified in the Throw List: EXC” on page 2-58

“Throw During Catch Parameter Construction: EXC” on page 2-60

“Continue Execution in __except: EXC” on page 2-62

“Unreachable Code: UNR” on page 2-63

“Non Terminations: Calls and Loops” on page 2-65

Function Returns a value: FRV
Check to establish whether on every value-returning function there is no
flowing off the end the function.

C++ Example

1 static volatile int rand;
2
3 class function {
4 public:
5 function() { rep = 0; }
6 int reply(int msg) { // FRV Verified: [function returns
a value]
7 if (msg > 0) return rep;
8 };
9
10 int reply2(int msg) { // FRV ERROR: [function does not
return a value]
11 if (msg > 0) return rep;
12 };
13
14 int reply3(int msg) { // FRV Warning: [function may not
return a value]
15 if (msg > 0) return rep;
16 };
17

2-11

2 Check Descriptions

18 protected:
19 int rep ;
20 };
21
22 void main (void){
23
24 int ans;
25 function f;
26
27 if (rand)
28 ans = f.reply(1);
29
30 else if (rand)
31 ans = f.reply2(0); // NTC ERROR: propagation of FRV ERROR
32 else
33 f.reply3(rand);
34 }

Explanation
Variables are often initialized using the return value of functions. However it
may occur that, as in the above example, the return value is not initialized for
all input parameter values (which should always be the case). In this case,
the target variable will not be properly initialized with a valid return.

Non Null this-pointer: NNT
This check verifies that the this pointer is null during call of a member
function.

C++ Example

1 #include <new>
2 static volatile int random_int = 0;
3
4 class Company
5 {
6 public:
7 Company(int numbClients):numberClients(numbClients){};

2-12

Colored Source Code for C++

8 void newClients (int numb) {
9 numberClients = numberClients + numb;
10 }
11 protected:
12 int numberClients;
13 };
14
15 void main (void)
16 {
17 Company *Tech = 0;
18
19 if (random_int)
20 Tech->newClients(2); // NNT ERROR: [this-pointer of
newClients is null]
21
22 Company *newTech = new Company(2);
23 newTech->newClients(1); // NNT Verified: [this-pointer
of newClients is not null]
24
25 }
26

Explanation
Polyspace verifies that all functions, virtual or not virtual, by a direct calling,
and through pointer calling are never called with a null this-pointer.

In the above example, a pointer to a Company object is declared and initialized
to null. When the newClients member function of the Company class is called
(line 20), PolySpace detects that the class object is a null pointer.

On the new allocation at line 22, as standard new operator returns an
initialized pointer or raises an exception, the this-pointer is considered as
correctly allocated at line 23.

2-13

2 Check Descriptions

Positive Array Size: CPP
This check verifies that the array size is always a non-negative value. In the
following example, the array is defined with a negative value by a function
call.

C++ Example

1 static volatile int random_int = 1;
2 static volatile unsigned short int random_user;
3
4 class Licence {
5 public:
6 Licence(int nUser);
7 void initArray();
8 protected:
9 int numberUser;
10 int (*array)[2];
11 };
12
13 Licence::Licence(int nUser) : numberUser(nUser) {
14 array = new int [numberUser][2]; // PAS ERROR: [array
size is not strictly positive]
15 initArray();
16 }
17
18 void Licence::initArray() {
19 for (int i = 0; i < numberUser; i++) {
20 array[i][2]=0;
21 }
22 };
23
24 void main (void)
25 {
26 if (random_int && random_user != 0)
27 Licence FirmUnknown (-random_user); // NTC ERROR:
propagation of PAS ERROR
28 }

2-14

Colored Source Code for C++

Explanation
The property, the non-negative value of an array size, is checked at line
14, where the array is defined with the [numberUser][1] dimension.
Unfortunately the numberUser variable is always negative as an opposite
of an unsigned short int type. PolySpace detects a red error and displays a
message.

Incorrect typeid Argument: CPP
Check to establish whether a typeid argument is not a null pointer dereference.
This check only occurs using typeid function declared in stl library <typeinfo>.

C++ Example

1 #include <typeinfo>
2
3 static volatile int random_int=1;
4
5 class Form
6 {
7 public:
8 Form (){};
9 virtual void trace(){};
10 };
11
12 class Circle : public Form
13 {
14 public:
15 Circle() : Form () {};
16 void trace(){};
17 };
18
19
20 int main ()
21 {
22
23 Form* pForm = 0 ;
24 Circle *pCircle = new Circle();
25

2-15

2 Check Descriptions

26 if (random_int)
27 return (typeid(Form) == typeid(*pForm)); // CPP ERROR:
[incorrect typeid argument]
28 if (random_int)
29 return (typeid(Form) == typeid(*pCircle)); // CPP Verified:
[typeid argument is correct]
30 }
31
32
33
34

Explanation
In this example, the pForm variable is a pointer to a Form object and
initialized to a null pointer. Using the typeid standard function, an exception
is raised. In fact here, the typeid parameter of an expression obtained by
applying the unary "*" operator is a null pointer leading to this red error.

At line 29, *pCircle is not null and typeid can be applied.

Incorrect dynamic_cast on Pointer: CPP
Check to establish when only valid pointer casts are performed through
dynamic_cast operator. +

C++ Example

1 #include <new>
2 static volatile int random = 1;
3
4 class Object {
5 protected:
6 static Object* obj;
7 public:
8 virtual ~Object() {}
9 };
10
11 class Item : Object {

2-16

Colored Source Code for C++

12 private:
13 static Item* item;
14 public:
15 Item();
16 };
17
18 Object* Object::obj = new Object;
19
20 Item::Item() {
21 if (obj != 0) {
22 item = dynamic_cast<Item*>(obj); // CPP ERROR: [incorrect
dynamic_cast on pointer (verification continue using a null pointer)]
23 if (item == 0) { // here analyzed and reachable code
24 item = this;
25 }
26 }
27 }
28
29 void main()
30 {
31 Item *first= new Item();
32 }

Explanation
Only the dynamic casting between a subclass and its upclass is authorized.
So, the casting of Object object to a Item object is an error on dynamic_cast at
line 21, because Object is not a subclass of Item.

Behavior follows ANSI C++ standard, in sense that even if dynamic_cast
is forbidden, verification continue using null pointer. So at line 22, item is
considered as null and assigned to this at line 23.

Note This is only check where we can have another color after a red.
It is not the case for a dynamic_cast on a reference.

2-17

2 Check Descriptions

Incorrect dynamic_cast on Reference: CPP
Check to establish when only valid reference casts are performed through
dynamic_cast operator.

C++ Example

1 #include <new>
2 static volatile int random = 1;
3 class Object {
4 protected:
5 static Object* obj;
6 public:
7 virtual ~Object() {}
8 };
9
10 class Item : public Object {
11 private:
12 static Item* item;
13 public:
14 Item& get_item();
15 Item& other_item();
16 };
17
18 Object* Object::obj = new Object;
19
20 Item& Item::get_item() {
21 Item& ref = dynamic_cast<Item&>(*Object::obj);
// CPP ERROR: [incorrect dynamic_cast on reference]
22 *item = ref;
// unreachable code
23 }
24
25 void main ()
26 {
27 Item * first= new Item();
28 if (random)
29 first->get_item();
// NTC ERROR: propagation of dynamic_cast reference error
30 Object &refo = dynamic_cast<Object&>(first->other_item());

2-18

Colored Source Code for C++

// CPP Verified: [dynamic_cast on reference is correct]
31 }

Explanation
Only the dynamic casting between a subclass and its upclass is authorized.
So, the casting of reference Object object to a reference Item object is an error
on dynamic_cast at line 20, because Object is not a subclass of Item.

The verification stops at line 20 and the error is propagated to a NTC error at
line 28. The behavior is different with a dynamic_cast on a pointer.

Invalid Pointer to Member: OOP
PolySpace checks that the pointer to a function member is invalid or null.

C++ Example

1
2 class A {
3 public:
4 void f() {
5 }
6 };
7
8 int main() {
9
10 void (A::*pf)(void) = &A::f;
11 int (A::*pf2)(void) = (int (A::*)(void))&A::f;
12
13 volatile int random;
14 A a;
15
16 if (random) {
17 int res = (a.*pf2)() ; // RED OOP ERROR [pf2 points to A::f \
that does not return a value]
18 res++;
19 }
20

2-19

2 Check Descriptions

21 pf = 0;
22 if (random) {
23 (a.*pf)() ; // Red OOP ERROR [pf pointer is null]
24 }
25 }

Explanation
When a function pointer operates on a null pointer to a member value, the
behavior is undefined. In the above example, the pf pointer is declared and
initialized to a null member function. When the function is called (at line 23)
a red error is raised. In addition, the pf2 pointer points to A::f, that does not
return a value, raising another red error at line 17.

Call of Pure Virtual Function: OOP
This check detects a pure virtual function call.

C++ Example

1
2 class Form
3 {
4 public:
5 Form(Form* f){};
6 Form(Form* f, char* title){
7 f->draw(); // OOP Error: [call to pure virtual \
function draw()]
8 };
9 virtual void draw() = 0;
10 };
11
12 class Rectangle : public Form
13 {
14 public:
15 Rectangle(): Form (this, "Rectangle"){} ;
16 void draw();
17 };
18
19 void Rectangle::draw () {

2-20

Colored Source Code for C++

20 Form::draw(); // Draw the rectangle
21 };
22
23 void main (void)
24 {
25 Rectangle Rect1;
26 Rect1.draw();
27 }

Explanation
The effect of making a virtual call to a pure virtual function directly or
indirectly for the object being created (or destroyed) from such a constructor
(or destructor) is undefined (see Standard ANSI ISO/IEC 1998 pp. 199).

One Rectangle object is declared: Rect1 calls the constructor (line 15), and so
the Form constructor (line 6) whose the draw() function member is called.
Unfortunately, this function is a pure virtual function. PolySpace points
out a warning at line 7.

Incorrect Type for this-pointer: OOP
Check to verify that a member function is associated to the right instance of
a class.

Three principal causes lead to an incorrect this-pointer type:

• An out of bounds pointer access

• A non initialized variable member

• An inadequate cast.

The following example shows the three possible cases.

C++ Example

1 #include <new>
2
3 int get_random_value(void);

2-21

2 Check Descriptions

4
5 struct A {
6 virtual int f();
7 };
8
9 struct C {
10 virtual int h() { return 7; }
11 };
12
13 void f(void) {
14 struct T {
15 int m_j;
16 C m_field;
17 T() : m_j(m_field.h()) {} // OOP ERROR (initialisation): \
[incorrect this-pointer type of T]
18 } badInit;
19 int r;
20
21
22 r = badInit.m_j;
23 }
24
25 class Bad
26 {
27 public:
28 int i;
29 void f();
30 Bad() : i(0) {}
31 };
32
33
34 class Good
35 {
36 public:
37 virtual void g() {}
38 void h() {}
39 static void k() {}
40 };
41
42 int main()

2-22

Colored Source Code for C++

43 {
44
45 A* a = new A;
46 Good *ptr = (Good *)(void *)(new Bad);
47
48 a->f(); // OOP Verified: [this-pointer type of \
A is correct]
49
50 if (get_random_value()) {
51 C* c = new C;
52 ++c;
53 c->h(); // OOP ERROR (out of bounds): \
[incorrect this-pointer type of C]
54 }
55
56 if (get_random_value()) ptr->g(); // OOP ERROR (cast): \
[incorrect this-pointer type of Bad]
57 if (get_random_value()) ptr->h(); // OOP ERROR (cast): \
[incorrect this-pointer type of Bad]
58
59 ptr->k(); // correct call to a static function
60
61 f();
62
63 }

Explanation
At line 17 of the example, PolySpace identifies a this-pointer type problem
(OOP category), because of an initialization missing for member field m_field.

At line 53 of the example, PolySpace points out that even if the function
member h is part of the c Class, we are outside the structure. It could be
compared to IDP for simple class.

Finally, lines 56 and 57 show another this-pointer problems: function
members g and h are not part of the Bad Class. Good does not inherited from
Bad. Note that there is no problem with static function member k because it
is only syntaxic.

2-23

2 Check Descriptions

Potential Call to: INF
[potential call to] are informative checks that help to understand reasoning
of PolySpace during function calls, constructions and destructions of objects
through

C++ Example

1 #include <iostream>
2 static volatile int random_int = 1 ;
3
4 typedef enum { AOP, UTC, GET } valueKind;
5
6 class SubVal {
7 valueKind val;
8 void init();
9 public:
10 SubVal(valueKind v);
11 virtual ~SubVal() {} // INF informative: \
[operator_delete(void*) is implicitly called]

12
13 virtual void log(const char* msg);
14 valueKind getVal() {return val;};
15 void undef();
16 };
17
18 SubVal::SubVal(valueKind v) : val(v) {
19 init();
20 }
21
22 void SubVal::init() {
23 log("SubVal creation"); // INF informative: \
[SubVal::log(const_char*) is called during construction of SubVal]

24 }
25
26 void SubVal::log(const char* msg) {
27 cout << msg;
28 }
29
30 void SubVal::undef() {

2-24

Colored Source Code for C++

31 log("ArithVal destruction"); // INF informative: \
[ArithVal::log(const_char*) is called if this-pointer is of type \
ArithVal]

32 }
33
34 class ArithVal : SubVal {
35 public:
36 ArithVal(double d) : SubVal(GET) {}
37 ~ArithVal();
38 void ArithAdd(double d) {};
39 virtual void log(const char* msg) {
40 cout << getVal();
41 };
42 };
43
44 ArithVal::~ArithVal() {
45 undef();
46 } // INF informative: [SubVal::~SubVal() is implicitly called]
47
48
49
50 void main(void){
51 ArithVal *xVal = new ArithVal(10.0);
52 xVal->ArithAdd(1.0);
53
54 SubVal *eVal = new SubVal(AOP);
55 eVal->log("new"); // INF informative: \
[SubVal::log(const_char*) is called if this-pointer is of type \
SubVal]

56
57 delete xVal; // INF informative: \
[ArithVal::~ArithVal() is called if this-pointer is of type \
ArithVal]

58 delete eVal; // INF informative: \
[SubVal::~SubVal() is called if this-pointer is of type SubVal]

59
60 }

2-25

2 Check Descriptions

Explanation
In this example, a base and derived classes are described. From main
program, we create objects, call member functions and delete them.
Associated to each function call, including constructors and destructors,
some informative checks are put giving (potential) call of functions, during
construction and destruction of objects.

Theses checks can only be green or gray.

Non-Initialized Variable: NIV/NIVL
Check to establish whether a variable local or not is initialized before being
read. We make a distinction between local variables (including parameters
of functions) and others. So PolySpace checks for same problems into two
categories.

C++ Example

1 extern int random_int(void);
2 typedef double tab[20];
3
4
5 class operation
6 {
7 public:
8 int addI(int x, int y) { return y+=x; };
9
10 void initTab(){
11 for (int i = 1; i < 20; i++) {
12 twentyFloat[i] = 0.0;
13 }
14 };
15
16 void addD(int x, int y){
17 twentyFloat[x] = twentyFloat[y] + 5.0; // Unproven NIV:
index 0 is not initialized.
18 };
19
20 protected:

2-26

Colored Source Code for C++

21 tab twentyFloat;
22 };
23
24
25 void main(void)
26 {
27 operation calculate;
28 int x, y = 0;
29
30 if (random_int()) {
31 calculate.addI(x,y); // NIV ERROR:
Non Initialized Variable
32 }
33
34 calculate.initTab();
35 calculate.addD(2,4);
36
37 }

Explanation
The result of the addition is unknown at line 28 because x is not initialized,
(UNR unreachable code on "+" operator).

In addition, line 16 shows how PolySpace prompts the user to investigate
further (by means of an orange check) when all cells have not been initialized.

A local variable is notified with a NIVL acronym.

Note The message associated with the check NIV or NIVL can give the type
of the variable if it concerns a basic type: "variable may be non initialized
(type unsigned int32)". The modifier volatile can also be notified: (type :
volatile unsigned int 8).

Non-Initialized Pointer: NIP
Check to establish whether a reference is initialized before being dereferenced.

2-27

2 Check Descriptions

C++ Example

1 class declare
2 {
3 public:
4 declare(int* p):pointer(p){};
5 int changeValue(int val){*pointer = 0;};
6 protected:
7 int* pointer;
8 };
9
10 void main(void)
11 {
12 int* p;
13 declare newPointer(p); // NIP ERROR:
reference is not initialized

14 newPointer.changeValue(0);
15 }

Explanation
As p is not initialized, the line 5 (*pointer = 0) would overwrite an unknown
memory cell (corresponding to the unreachable gray code on "*").

User Assertion Failure: ASRT
Check to establish whether a user assertion is valid. If the assumption
implied by an assertion is invalid, then the standard behavior of the assert
macro is to abort the program. PolySpace therefore considers a failed
assertion to be a run-time error.

C++ Example

1 #include <assert.h>
2
3 typedef enum
4 {
5 monday=1, tuesday,

2-28

Colored Source Code for C++

6 wensday, thursday,
7 friday, saturday,
8 sunday
9 } dayofweek ;
10
11 // stubbed function
12 dayofweek random_day(void);
13 int random_value(void);
14
15 void main(void)
16 {
17 unsigned int var_flip;
18 unsigned int flip_flop;
19 dayofweek curDay;
20 unsigned int constant = 1;
21
22 if (random_value()) flip_flop=1; else flip_flop=0;
// flip_flop randomly be 1 or 0
23 var_flip = (constant | random_value());
// var_flip is always > 0
24
25 if(random_value()) {
26 assert(flip_flop==0 || flip_flop==1); // ASRT Verified:
user assertion is verified
27 assert(var_flip>0); // ASRT Verified
28 assert(var_flip==0); // ASRT ERROR:
user assertion fails
29 }
30
31 if (random_value()) {
32 curDay = random_day(); // Random day
of the week
33 assert(curDay > thursday); // ASRT Warning:
User assertion may fail

34 assert(curDay > thursday); // ASRT Verified
35 assert(curDay <= thursday); // ASRT ERROR:
user assertion fails
36 }
37 }

2-29

2 Check Descriptions

Explanation
In the main, the assert function is used in two different ways:

• To establish whether the values flip_flop and var_flip in the program are
inside the domain which the program is designed to handle. If the values
were outside the range implied by the assert (see line 28), then the progam
would not be able to run properly. Thus they are flagged as run-time errors.

• To redefine the range of variables as shown at line 34 where curDayis
restricted to just a few days. Indeed, PolySpace makes the assumption that
if the program is executed without a run-time error at line 33, curDay can
only have a value greater than thursday after this line.

Overflows and Underflows

• “Scalar and Float Overflows: OVFL” on page 2-30

• “Scalar and Float Underflows: UNFL (Deprecated)” on page 2-34

• “Float Underflow and Overflow: UOVFL (Deprecated)” on page 2-34

Scalar and Float Overflows: OVFL
Check to establish whether an arithmetic expression overflows or underflows.
This is a scalar check with integer type and float check for floating point
expression.

C++ Example.

1 #include <float.h>
2
3 extern int random_int(void);
4
5 class Calcul
6 {
7 public:
8 int makeOverflow(int i){
9 return 2 * (i - 1) + 2; // OVFL ERROR: [scalar
variable overflows on [+] ...]
10 // 2^31 is an overflow value for int32
11 }

2-30

Colored Source Code for C++

12 float overflow (float value){
13 return 2 * value + 1.0; // OVFL ERROR: [float
variable overflows on [conversion from ...]]
14 }
15 };
16
17
18 void main(void)
19 {
20 Calcul c;
21 int i = 1;
22 float fvalue = FLT_MAX;
23
24 i = i << 30; // i = 2**30
25
26 if (random_int())
27 i = c.makeOverflow(i); // NTC ERROR:
propagation of OVFL ERROR
28
29 if (random_int())
30 fvalue = c.overflow(fvalue); // NTC ERROR:
propagation of OVFL ERROR
31 }

Explanation. On a 32-bits architecture platform, the maximum integer
value is 2^31-1, thus 2^31 will raise an overflow. In the same manner, if
fvalue represents the biggest float its double cannot be represented with same
type and raises an overflow.

Overflow on the Biggest Float. There are occasions when it is important
to understand when overflow may occur on a float value approaching its
maximum value. Consider the following example.

void main(void)
{
float x, y;
x = 3.40282347e+38f; // is green
y = (float) 3.40282347e+38; // OVFL red

}

2-31

2 Check Descriptions

There is a red error on the second assignment, but not the first. The real
"biggest" value for a float is: 340282346638528859811704183484516925440.0
- MAXFLOAT -.

Now, rounding is not the same when casting a constant to a float, or a
constant to a double:

• floats are rounded to the nearest lower value;

• doubles are rounded to the nearest higher value;

• 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440 (named MAXFLOAT).

• In the case of the second assignment, the value is cast to a double first
- by your compiler, using a temporary variable D1 -, then into a float -
another temporary variable -, because of the cast. Float value is greater
than MAXFLOAT, so the check is red.

• In the case of the first assignment, 3.40282347e+38f is directly cast into a
float, which is less than MAXFLOAT

The solution to this problem is to use the "f" suffix to specify the variable
directly as a float, rather than casting.

Constant Overflow. Consider the following example, which would cause
an overflow.

int x = 0xFFFF; /* OVFL */

The type given to a constant is the first type which can accommodate its
value, from the appropriate sequence shown below. (See “Predefined Target
Processor Specifications (size of char, int, float, double...)” in the PolySpace
Products for C++ User’s Guide for information about the size of a type
depending on the target.)

Decimals int , long , unsigned long

Hexadecimals Int, unsigned int, long, unsigned long

Floats double

For example (assuming 16-bits target):

2-32

Colored Source Code for C++

5.8 double

6 int

65536 long

0x6 int

0xFFFF unsigned int

5.8F float

65536U unsigned int

The option -ignore-constant-overflows allows the user to bypass this limitation
and consider the line

int x = 0xFFFF; /* OVFL */ as int x = -1; instead of 65535, which
does not fit into a 16-bit integer (from -32768 to 32767).

Float Underflow Versus Values Near Zero. The definition of the word
"underflow" differs between the ANSI standard and the ANSI/IEEE 754-1985
standard. According to the former definition, underflow occurs when a
number is sufficiently negative for its type not to be capable of representing
it. According to the latter, underflow describes the erroneous representation
of a value close to zero due to the limits of its representation.

PolySpace verifications apply the former definition.

(The latter definition does not impose the raising of an exception as a result
of an underflow. By default, processors supporting this standard permit the
deactivation of such exceptions.)

Consider the following example.

1 #define FLT_MAX 3.40282347e+38F // maximum representable \
float found in <float.h>
2 #define FLT_MIN 1.17549435e-38F // minimum normalised \
float found in <float.h>
3
4 void main(void)
5 {
6 float zer_float = FLT_MIN;

2-33

2 Check Descriptions

7 float min_float = -(FLT_MAX);
8
9 zer_float = zer_float * zer_float; // No check underflow \
near zero. VOA says {[expr] = 0.0}
10 min_float = -min_float * min_float; // OVFL ERROR: underflow \
checked by verifier
11
12 }

Scalar and Float Underflows: UNFL (Deprecated)

Note The UNFL check is deprecated in R2010a and later. The UNFL check
no longer appears in PolySpace results. Instead of two separate UNFL and
OVFL checks, a single OVFL check now appears.

Check to establish whether an arithmetic expression underflows. This is a
scalar check with integer type and a float check for floating point expressions.

Float Underflow and Overflow: UOVFL (Deprecated)

Note The UOVFL check is deprecated in R2009a and later. The UOVFL
check no longer appears in PolySpace results. Instead of a single UOVFL
check, the results now display two checks, a UNFL and an OVFL.

The check UOVFL only concerns float variables. PolySpace shows an UOVFL
when both overflow and underflow can occur on the same operation.

Scalar or Float Division by zero: ZDV
Check to establish whether the right operand of a division (denominator)
is different from 0[.0].

C++ Example

1 extern int random_value(void);
2

2-34

Colored Source Code for C++

3 class Operation {
4 public:
5 int zdvs(int p){
6 int j = 1;
7 return (1024 / (j-p)); // ZDV ERROR: Scalar Division by Zero
8 }
9 float zdvf(float p){
10 float j = 1.0;
11 return (1024.0 / (j-p)); // ZDV ERROR: float Division by Zero
12 }
13 };
14
15 int main(void)
16 {
17 Operation op;
18
19 if (random_value())
20 op.zdvs(1); // NTC ERROR: propagation of ZDV ERROR.
21
22 if (random_value())
23 op.zdvf(1.0); // NTC ERROR: propagation of ZDV ERROR.
24 }

Shift Amount is Outside its Bounds: SHF
Check to establish that a shift (left or right) is not bigger than the size of
integral type (int and long int). The range of allowed shift depends on the
target processor: 16 bits on c-167, 32 bits on i386 for int, etc.

C++ Example

1 extern int random_value(void);
2
3 class Shift {
4 public:
5 Shift(int val) : k(val){};
6 void opShift(int x, int l){
7 k = x << l; // SHF ERROR: [scalar shift
amount is outside its bounds 0..31]
8 }

2-35

2 Check Descriptions

9 void opShiftSup(int x, int l){
10 k = x >> l; // SHF ERROR: [scalar shift
amount is outside its bounds 0..31]
11 }
12 void opShiftUnsigned(unsigned int x, int l){
13 unsigned int v = 1024;
14 v = x >> l; // SHF ERROR: [scalar shift
amount is outside its bounds 0..31]
15 }
16 protected:
17 int k;
18 };
19
20
21 void main(void)
22 {
23 int m, l = 1024; // 32 bits on i386
24 unsigned u = 1024;
25
26 Shift s(1024);
27
28 if (random_value()) s.opShift(l ,32); // NTC
ERROR: propagation of SHF ERROR
29 if (random_value()) s.opShiftUnsigned(u ,32); // NTC
ERROR: propagation of SHF ERROR
30 if (random_value()) s.opShiftSup(l ,32); // NTC
ERROR: propagation of SHF ERROR
31
32 }

Explanation
In this example, we just show that shift amount is greater than the integer
size.

Left Operand of Left Shift is Negative: SHF
Check to establish whether the operand of a left shift is a signed number.

2-36

Colored Source Code for C++

C++ Example

1 extern int random_value(void);
2
3 class Shift {
4 public:
5 Shift(){};
6 int operationShift(int x, int y){
7 return x << 1; // SHF ERROR: left operand of left
shift is negative
8 }
9 };
10
11
12 void main(void)
13 {
14 Shift* s = new Shift();
15
16 if (random_value())
17 s->operationShift(-200,1); // NTC ERROR: propagation
of SHF ERROR
18 }

Explanation
As signed number representation is stored in the higher order bit, you can not
left-shift a signed number without loosing sign information.

As an aside, note that the -allow-negative-operand-in-shift option used at
launching time instructs PolySpace to allow explicitly signed numbers on
shift operations. Using the option in the current example, the red check at
line 8 is transformed in a green one.

2-37

2 Check Descriptions

POW (Deprecated)

Note The POW check is deprecated in R2009a and later. The POW check no
longer appears in PolySpace results.

The pow function is now a standard stub, and the POW check has been
replaced by a function call and an NTC error when the power is negative.

Check to establish whether the left operand of the pow mathematical function
declared in <math.h> is positive (directly or in generated constructors or
destructors)

Array Index is Outside its Bounds: OBAI
Check to establish whether an index is compatible with the length of the
array being accessed.

C++ Example

1 #define TAILLE_TAB 1024
2 typedef int tab[TAILLE_TAB];
3
4 class Array
5 {
6 public:
7 Array(){};
8 void initArray();
9 private:
10 tab table;
11 };
12
13
14 void Array::initArray()
15 {
16 int index;
17
18 for (index = 0; index < TAILLE_TAB ; index++){
19 table[index] = 10;

2-38

Colored Source Code for C++

20 }
21 table[index] = 1; // OBAI ERROR: [out of bounds array index]
22 };
23
24
25 void main(void)
26 {
27 Array* test = new Array();
28 test->initArray(); // NTC ERROR: propagation of OBAI ERROR
29 }

Explanation
Just after the loop, index equals SIZE_TAB. Thus tab[index] = 1 overwrites
the memory cell just after the last array element.

Note The message associated with the check OBAI gives always the range
of the array: out of bounds array index [0..1023].

Function Pointer Must Point to a Valid Function: COR
Check to establish whether a function pointer points to a valid function, or
to function with a valid prototype.

C++ Example

1 typedef void (*CallBack)(void *data);
2
3 struct {
4 int ID;
5 char name[20];
6 CallBack func;
7 } funcS;
8
9 float fval;
10
11 void main(void)

2-39

2 Check Descriptions

12 {
13 CallBack cb =(CallBack)((char*)&funcS + 24 * sizeof(char));
14
15 cb(&fval); // COR ERROR: function pointer must point to a
valid function
16 }

Explanation
In the example, func has a prototype in conformance with CallBack’s
declaration. Therefore func is initialized to point to the NULL function
through the global declaration of funcS.

Wrong Number of Arguments: COR
Check to establish whether the number of arguments passed to a function
matches the number of argument in its prototype.

C++ Example

1 extern int random_value(void);
2
3 typedef int (*t_func_2)(int);
4 typedef int (*t_func_2b)(int,int);
5
6 int foo_nb(int x)
7 {
8 if (x%2 == 0)
9 return 0;
10 else
11 return 1;
12 }
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;

2-40

Colored Source Code for C++

20 if (random_value())
21 i = ptr_func(1,2); // COR ERROR: [function pointer
must point on a valid function]
22 // COR Warning: [wrong number of arguments for call
to function foo_nb(int): got 2 instead of 1]
23 }

Explanation
In this example, ptr_func is a pointer to a function that takes two arguments
but it has been initialized to point to a function that only takes one.

In this case this is the associated COR warning which explains the COR
ERROR: [wrong number of arguments for call to function <name<: got <N<
instead of <M<], where <N< is the number of argument used and <M< the
number of argument waited.

Wrong Type of Argument: COR
Check to establish whether each argument passed to a function matches
the prototype of that function.

C++ Example

1 static volatile int random = 1;
2
3 int f(float f) { return 0; }
4 int g(int i) { return i; }
5
6 typedef int (*func_int)(int);
7
8 func_int ftab = (func_int)f;
9
10 void badTab(int i) {
11 ftab(++i) ; // COR ERROR: [function pointer must
point on a valid function]
12 // COR Warning: [wrong type for argument #1 of call
to function f(float)]
13 }

2-41

2 Check Descriptions

14
15 int main()
16 {
17 int idx = 0;
18
19 for (int i = 9; i < 10; ++ i) {
20 if (random)
21 badTab(++idx); // NTC ERROR: propagation of COR ERROR
22 }
23 }

Explanation
In this example, tab is an function pointer to functions which expects a float
as input argument. However, the parameter used is an int. So PolySpace
Viewer prompts the user to check the validity oh the code.

In this case, this is the associated COR warning which explains the COR
ERROR: [wrong type for argument #<N> of call to function <name>], where
<N> gives the location of the wrong argument in the function.

Pointer is Outside its Bounds: IDP
Check to establish whether a reference refers to a valid object (whether the
dereferenced pointer is still inbound of the pointed object).

C++ Example

1 #define TAILLE_TAB 1024
2
3 typedef int tab[TAILLE_TAB];
4
5 class Array {
6 public:
7 Array(tab a){
8 p = a;
9 initArray();
10 }
11 void initArray(){

2-42

Colored Source Code for C++

12 int index;
13 for (index = 0; index < TAILLE_TAB ; index++, p++) {
14 *p = 0;
15 }
16 }
17 void changeNextElementWithValue(int i){
18 *p = i; // IDP ERROR: reference refers to an
invalid object
19 }
20
21 private:
22 int *p;
23 };
24
25
26 void main(void)
27 {
28 tab t;
29
30 Array a(t);
31 a.changeNextElementWithValue(1); // NTC ERROR:
propagation of IDP ERROR
32 }

Explanation
The pointer p is initialized to point to the first element of tab at line 4. When
the loop exits, p.

For more information, refer to the following sections:

• “Understanding Addressing” on page 2-43

• “Understanding Pointers” on page 2-47

Understanding Addressing

• “Hardware Registers” on page 2-44

• “NULL pointer” on page 2-45

2-43

2 Check Descriptions

• “Comparing addresses” on page 2-46

Hardware Registers. Many code verifications exhibit orange out of bound
checks with respect to accesses to absolute addresses and/or hardware
registers.

(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because X ~ [-2^31, 2^31-1] permanently.

// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because *p ~ [-2^31, 2^31-1] permanently

// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

2-44

Colored Source Code for C++

Replace With

#define X int X;

int *p; int _p;
#define p (&_p)

Note Check that the chosen
variable name (p in this example)
does not already exist

int *p; volatile int _p;
int *p = &_p;

NULL pointer. Consider the following NULL address:

#define NULL 0

• It is illegal to dereference this 0 value

• 0 is not treated as an absolute address.

*NULL = 100; // produces a red Illegal
Dereference Pointer (IDP)

Assuming these declarations:

int *p = 0x5;
volatile int y;

and these definitions:

#define NULL 0
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below:

While (p != (void *)0x1)
p--; // terminates

2-45

2 Check Descriptions

0x1 is an absolute address, it can be reached and the loop terminates

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // illegal dereference of pointer

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL
pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange dereference of a pointer

}

When p reaches the address 0x0, there is an attempt to considered it as an
absolute address In effect, it is an attempt to dereference a NULL pointer –
which is forbidden. Note that in this case, the check is orange because the
execution of the code here is ok (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of PolySpace, it is easy to automatically
stub a function whose purpose is to copy data from/to RAM or to compute a
checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is essential to ensure the assignment of the
correct initialization values to them.

Comparing addresses. PolySpace only deals with the information referred
to by a pointer, and not the physical location of a variable. Consequently it
does not compare addresses of variables, and makes no assumption regarding
where they are located in memory.

Consider the following two examples of PolySpace behavior:

int a,b;

2-46

Colored Source Code for C++

if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;
for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because PolySpace doesn't consider any

// relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the PolySpace verification is concerned, “x” remains constantly
equal to 12.

Understanding Pointers
PolySpace doesn’t analyze anything which would require the physical address
of a variable to be taken into account.

• Consider two variables x and y. PolySpace verification will not make a
meaningful comparison of “&x” (address of x) and “&y”

• So, the Boolean (&x < &y) can be true or false as far as PolySpace
verification is concerned.

However, PolySpace verification does keep track of the pointers that point to
a particular variable.

• So, if ptr points to X, *ptr and X will be synonyms.

• “How does malloc work for PolySpace?” on page 2-48

• “Structure Handling — Array Conversions: COR” on page 2-48

2-47

2 Check Descriptions

• “Structure Handling — Mapping a Small Structure into a Bigger One”
on page 2-49

How does malloc work for PolySpace?. PolySpace verification
accurately models malloc, such that both the possible return values of a null
pointer and the requested amount of memory are taken into account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

Structure Handling — Array Conversions: COR. Check to establish
whether a small array is mapped onto a bigger one through pointer cast.

C++ Example

1 typedef int Big[100];
2 typedef int Small[10];
3 typedef short EquivBig[200];

2-48

Colored Source Code for C++

4
5 Small smalltab;
6 Big bigtab;
7
8 extern int random_val();
9
10 void main(void)
11 {
12
13 Big * ptr_big = &bigtab;
14 Small * ptr_small = &smalltab;
15
16 if (random_val()){
17 Big *new_ptr_big = (Big*)ptr_small; // COR ERROR:
array conversion must not extend range
18 }
19
20 if (random_val()){
21 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;
22 Small *ptr_new_small = (Small*)ptr_big; // COR Verified
23 }
24 }

Explanation

In the example above, a pointer is initialized to the Big array with the address
of a the Small array. This is not legal since it would be possible to dereference
this pointer outside of the Small array. Line 22 shows that the mapping of
arrays with same length and different prototypes is authorized.

Structure Handling — Mapping a Small Structure into a Bigger One.
For example, if p is a pointer to an object of type t_struct and it is initialized
to point to an object of type t_struct_bis whose size is less than the size of
t_struct, it is illegal to dereference p because it would be possible to access
memory outside of t_struct_bis. PolySpace prompts user to investigate further
by means of an orange check. See the following example.

1 #include <malloc.h>
2
3 typedef struct {

2-49

2 Check Descriptions

4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP Warning: reference may not refer to a
valid object
19
20 }

Function throws: EXC
Check to verify that a function never raises an exception for every returned
values.

C++ Example

1 #include <vector>
2
3 static volatile int random_int = 1;
4 class error{};
5
6 class InitVector
7 {
8 public:
9 InitVector (int size) {
10 sizeVector = size;
11 table.resize(sizeVector);
12 Initialisation();
13 };
14 void Initialisation ();

2-50

Colored Source Code for C++

15 void reSize(int size);
16 int getValue(int number) throw (error);
17 int returnSize();
18 private:
19 int sizeVector;
20 vector<int> table;
21 };
22
23 void InitVector::Initialisation() { // EXC Warning: [functions
may throw]
24 int i;
25 for (i = 0; i < table.size(); i++){
26 table[i] = 0;
27 }
28 if (random_int) throw i;
29 }
30
31 void InitVector::reSize(int sizeT) {
32 table.resize(sizeT);
33 sizeVector = table.size();
34 }
35
36 int InitVector::getValue(int number) throw (error) { // EXC ERROR:
[function throws (verification jumps to enclosing handler)]
37 if (number >= 0 && number < sizeVector)
38 return table[number];
39 else throw error();
40 }
41
42 int InitVector::returnSize() { // EXC Verified: [function
does not throw]
43 return table.size();
44 }
45
46 void main (void)
47 {
48 InitVector *vectorTest = new InitVector(5);
49
50 if (random_int)
51 vectorTest->returnSize();

2-51

2 Check Descriptions

52
53 if (random_int)
54 vectorTest->getValue(5); // EXC ERROR: [call to getValue
throws (verification jumps to enclosing handler)]
55 }

Explanation
The class InitVector allows to create a new vector with a defined size. The
resize member function allows to change the size, without any size limit.
returnSize returns the vector’s size, and no exception can be thrown. A green
check is displayed for this function: [function does not throw].

The getValue function returns the array’s value for a given index. If the
parameter is outside vector bounds, an exception is raised. For a vector’size of
5 elements, valid index are [0..4]. At line 53, the programmers tries to access
the fifth element table[5]. An exception is raised and Polyspace displays a
red message.

Polyspace Verfier tests functions that raises exception or no, with void or
no-void type:

• always: function throws (verification jumps to enclosing handler)

• never: function does not throw

• sometimes: function may throw

When this check happens, a propagation to caller is made with another
exception check [call to <name> throws] (see line 53).

Call to Throws: EXC
Check to verify that a function call raises or not an exception.

C++ Example

1 static volatile int random_int =1 ;
2
3 class error{};

2-52

Colored Source Code for C++

4
5 class A
6 {
7 public:
8 A() {value=9;};
9 int badReturn() throw (int);
10 int goodReturn() throw (error);
11 protected:
12 int value;
13 };
14
15 int A::badReturn() throw (int) { // EXC ERROR: [function
throws (verification jumps to enclosing handler)]
16 if(!value)
17 return value;
18 else
19 throw 2;
20 };
21
22 int A::goodReturn() throw (error) { // EXC Verified: [function
does not throws]
23 int p = 7;
24 if (p>0)
25 return value;
26 else
27 throw error();
28 };
29
30 void main (void)
31 {
32 A* a = new A();
33 if(random_int)
34 a->badReturn(); // EXC ERROR: [call to badRetrun throws
(verification jumps to enclosing handler)]
35 if(random_int)
36 a->goodReturn(); // EXC Verified: [call to goodRetrun
does not throw]
37 }

2-53

2 Check Descriptions

Explanation
In the first call, Polyspace proposes to caller that the function always raises
an exception because member variable value is always different from 0.

In the second call, PolySpace checks that no throw has been made in the
function because the conditional test at line 24 is always true.

Most of the time, the [call to <name> throws] is associated to [function
throws] check.

Destructor or Delete Throws: EXC
Check to establish whenever an exception is throw and not catch in a
destructor or during a delete.

C++ Example

1 #include <math.h>

2 using namespace std;

3 volatile unsigned int random_int = 1 ;

4

5 class error{};

6

7 class Rectangle

8 {

9 public:

10 Rectangle(){};

11 Rectangle (unsigned int longueur, unsigned int large):

longueurRect(longueur),largeRect(large){};

12

13 virtual ~Rectangle(){ // EXC Warning: [possible throw during

destructor or delete]

14 if (!random_int)

15 throw error();

16 };

17

18 virtual double calculArea() {

19 return longueurRect * largeRect;

20 };

2-54

Colored Source Code for C++

21

22 protected:

23 unsigned int longueurRect;

24 unsigned int largeRect;

25 };

26

27 class Cube : public Rectangle

28 {

29 public:

30 Cube():cote(3){};

31 ~Cube(){ // EXC ERROR: [throw during destructor

or delete]

32 if(random_int>=0)

33 throw error();

34 };

35 double calculArea(){

36 return pow(cote,cote);

37 };

38 protected:

39 int cote ;

40 };

41

42 void main (void)

43 {

44 try {

45 Rectangle* form1 = new Rectangle(10,2);

46 double k = form1->calculArea();

47

48 Cube* form2 = new Cube;

49 double l = form2->calculArea();

50

51 delete form1;

52 delete form2; // NTC ERROR: propagation of throw during

destructor

53 }

54 catch (error){

55 //raised when an error occurs in a destructor

56 }

57 catch (...){}

58 }

2-55

2 Check Descriptions

Explanation
In the class Cube’s destructor at line 31, an error is raised when random_int
is greater than 0. As random_int was declared as a volatile unsigned int,
this condition is always true.

At line 13, in the destructor of class Rectangle, the test on the random_int
value may be true when it is different from 0. Thus, it is possible that
the exception is raised or not in the destructor, and an orange warning is
displayed instead.

Destructors are called during stack unwinding when an exception is thrown.
In this case any exception thrown by a destructor would cause the program
to terminate. Therefore it is better programming to catch exceptions in
destructors.

Main, Tasks or C Library Function Throws: EXC
Check that functions used at C level, in a task or in main do not raise
exceptions.

C++ Example

1 #include <cstdlib>
2 #include <iostream>
3 static volatile int random_int = 1;
4
5 extern "C" {
6 int compare (const void * a, const void * b) {
// EXC Verifeid:
[main, task or C library function does not throw]
7 return (*(int*)a - *(int*)b);
8 }
9 int c_compare_bad (const void *k, const void *e) {
// EXC ERROR:
[main, task or C library function throws]
10 throw 1;
11 }

2-56

Colored Source Code for C++

12 };
13
14 typedef int arrayT[5];
15
16 class arrayToRange
17 {
18 public:
19 arrayToRange(arrayT* a) :tab(a) {};
20 arrayT* returnTabInOrder() {
21 qsort(*tab, 5, sizeof(int), compare);
22 return tab;
23 };
24 arrayT* returnTabInOrderBad() {
25 qsort(*tab, 5, sizeof(int), c_compare_bad);
26 return tab;
27 };
28 protected:
29 arrayT* tab;
30 };
31
32 void main(void) // EXC Verified: [main, task or C library
function does not throw]
33 {
34 try
35 {
36 arrayT tabInit = {1,3,4,2,5};
37 arrayT* table = &tabInit;
38 arrayToRange ArrayTest(table);
39 ArrayTest.returnTabInOrderBad(); // No jump to enclosing
handler
40 ArrayTest.returnTabInOrder();
41 }
42 catch (...) { // gray code
43 cout << "error raised:" << "bye"; // gray code
44 }
45 }

2-57

2 Check Descriptions

Explanation
In this example, we called a C stubbed function, qsort defined in the include
file cstlib, which returns a sorted array of integers. Two functions, defined in
a class called arrayToRange, call this qsort function:

• The first one, returnTabInOrder, calls qsort, with a C function pointer as
third parameter, which can not raise an exception. So PolySpace displays a
green message (line 6).

• The second one, returnTabInOrderBad, uses a C function pointer which
always raises an exception. PolySpace displays a red message on the C
function (line 9).

Limitation: even if c_compare_bad function always raise an exception,
PolySpace does not propagate to enclosing handler. Indeed at line 39, all is
green and the verification continue even if call is surrounded by a try/catch
leading to gray code in catch block.

Exception Raised is Not Specified in the Throw List:
EXC
Check to determine whether a function has thrown a non authorized
exception.

C++ Example

1 #include <string>

2

3 using namespace std;

4

5 int negative_balance = -300;

6

7 class NotPossible

8 {

9 public:

10 >_&).COR.0.error.html" name="L10-C2">NotPossible(const string & s)

: Error_Message(>_&).NIP.1.error.html" name="L10-C48">s)>_&).COR.2.error.html"

name="L10-C50">{};

11 ~NotPossible(){};

12 string Error_Message;

2-58

Colored Source Code for C++

13 };

14

15 class Account

16 {

17 public:

18 Account(long accountInit):account(accountInit) {}

19 void debit (long amount) throw (int, char);

20 long getAccount () { return account; };

21 protected:

22 long account;

23 };

24

25 void Account::debit(long amount) throw (int, char) { //

EXC ERROR: [exception raised is not specified in the throw list]

26 if ((account - amount) < negative_balance)

27 throw NotPossible ("error");

28 account = account - amount;

29 }

30

31 void main (void)

32 {

33 try {

34 Account *James = new Account(12000);

35 James -> debit(13000); // NTC ERROR:

propagation of not specified exception

36 long total = James -> getAccount();

37 }

38 catch (NotPossible&){}

39 catch (...){};

40 }

41

Explanation
In the above example, the Account class is defined with the debit function
which allows to throw the specified exception. This function can only catch the
int and char exceptions. The bank authorized an overdraft of 300 euros. The
James’s account is created with an initial balance of 12000 Euros. So, at line
35, his account is debited with 13000. In the debit function, the if condition

2-59

2 Check Descriptions

(line 27) is true, thus a NotPossible exception is raised. Unfortunately, this
exception type is not allowed within the throw list at line 25 even if the catch
operand allows it. So PolySpace detects an error.

Throw During Catch Parameter Construction: EXC
Check to prevent throw during dynamic initialization in constructors and
during initialization of arguments in catch.

C++ Example

1 #include <string>
2
3 static volatile int random_int = 1;
4 static volatile int random_red = 0;
5
6 class error{};
7
8 class NotPossible
9 {
10 public:
11 NotPossible(const NotPossible&) // EXC ERROR: [function
throws (verification jump to enclosing handler)]
12 {
13 throw error();
14 };
15 NotPossible() // NRE ERROR: [function
throws (verification jump to enclosing handler)]
16 {
17 throw NotPossible(7);
18 };
19 NotPossible(int){};
20 ~NotPossible(){};
21 private:
22 string Error_Message;
23 };
24
25 class Test
26 {
27 public:

2-60

Colored Source Code for C++

28 Test(int val) : value(val){};
29 int returnVal(){
30 if (random_int)
31 throw error();
32 else
33 return value;
34 };
35 private:
36 int value;
37 };
38
39 int main() {
40
41 try {
42 Test* T = new Test(1);
43 if (random_red)
44 throw NotPossible(); // EXC ERROR: [call to
NotPossible throws (verification jumps tp enclosing handler)]
45 else
46 T->returnVal();
47 if (random_red) {
48 NotPossible * Npos = new NotPossible(); // EXC
ERROR: [throw during dynamic initialization]
49 }
50 }
51 catch(NotPossible a) {} // EXC ERROR: [throw during
catch parameter conctruction]
52 catch(...) {}
53 }

Explanation
At line 48 of the previous example, during dynamic initialization of Npos, a
call to default constructor NotPossible is made. This constructor raises an
exception leading to the EXC error. Indeed, raising an exception during a
dynamic initialization is not authorized.

In same example at line 51, an exception is caught by the throw coming from
line 44. A variable of type NotPossible is created at line 48 using also same

2-61

2 Check Descriptions

default constructor. However, this constructor throws an integer exception
leading to red error at line 48.

Each catch clause (exception handler) is like a function that takes a single
argument of one particular type. The identifier may be used inside the
handler, just like a function argument. Moreover, the throw of an exception in
a catch block is not authorized.

Continue Execution in __except: EXC
Check to establish whether in a __except catch block the use of MACRO
EXCEPTION_CONTINUE_EXECUTION. This check can only occur using
a visual dialect.

C++ Example

1
2 #include <windows.h>
3 #include <excpt.h>
4
5 void* data;
6 struct No_Data {};
7
8 void* check_glob() { // EXC ERROR: [function throws
(verification jumps to enclosing handler)]
9 if (!data) throw No_Data(); // EXC ERROR: []
10 return data;
11 }
12
13 int main() {
14 __try {
15 data = 0;
16 check_glob(); // EXC ERROR: [call to check_glob() throws
(verification jumps to enclosing handler)]
17 }
18 __except(data == 0
19 ? EXCEPTION_CONTINUE_EXECUTION // EXC ERROR:
[expression value is EXCEPTION_CONTINUE_EXECUTION]
20 : EXCEPTION_EXECUTE_HANDLER) {
21 data = new (void*); // Gray code

2-62

Colored Source Code for C++

22 }
23 }

Explanation
In this example, the call to function check_glob() throws an exception. This
exception jumps to enclosing handler, in this case the __except block. Using
EXCEPTION_CONTINUE_EXECUTION, it could be possible normally to
continue verification and comes back at line 9 as if exception never happened.
In the example, data is assigned to new value at line 21 in __except block
and no more throw will occur.

PolySpace cannot handle this kind of behavior and put a red error on the
EXCEPTION_CONTINUE_EXECUTION keyword since it has found a path
to this instruction. It results gray code at line 21 and at line 10. All other red
errors concern management of the exception: function throws and call throws].

Note It is possible to match functional behavior using volatile keyword by
replacing code at line 5: volatile void *data;

Unreachable Code: UNR
Check to establish whether different code snippets (assignments, returns,
conditional branches and function calls) are reached (Unreachable code is
referred to as "dead code"). Dead code is represented by means of a gray color
coding on every check and an UNR check entry.

C++ Example

1
2 typedef enum {
3 Intermediate, End, Wait, Init
4 } enumState;
5
6 // automatic stubs
7 int intermediate_state(int);
8 int random_int(void);

2-63

2 Check Descriptions

9
10 bool State (enumState stateval)
11 {
12 int i;
13 if (stateval == Init) return false;
14 return true;
15 }
16
17 int main (void)
18 {
19 int i;
20 bool res_end;
21 enumState inter;
22
23 res_end = State(Init);
24 if (res_end == false) {
25 res_end = State(End);
26 inter = (enumState)intermediate_state(0);
27 if (res_end || inter == Wait) { // Unreachable
code for inter == Wait
28 inter = End;
29 }
30 // use of i not initialized
31 if (random_int()) {
32 inter = (enumState)intermediate_state(i); // NIV ERROR:
[non initialized variable]
33 if (inter == Intermediate) { // Unreachable
code after runtime error
34 inter = End;
35 }
36 }
37 } else {
38 i = 1; // Unreachable code
39 inter = (enumState)intermediate_state(i); // UNR check
40 }
41 if (res_end) { // UNR code always reached, but no else
42 inter = End;
43 }
44 return res_end;
45 }

2-64

Colored Source Code for C++

46

Explanation
The example illustrates three possible reasons why code might be
unreachable, and hence be colored gray:

• At line 30, a conditional part of a conditional branch is always true and the
other part never evaluated because of the standard definition of logical
operator "||".

• The piece of code after a red error is never evaluated by PolySpace. The
call to the function and the following line after line 35 are considered to
be lines of dead code. Correcting the red error and re-launching would
allow the color to be revised.

• At line 27, the first branch is always evaluated to true (if { part) and the
other branch is never executed (else { part at lines 41 to 42).

In addition, at line 41, there is an if statement without an else clause. In
this instance, because there is no else clause and res_end is always true, the
if keyword is colored gray.

Non Terminations: Calls and Loops
NTC and NTL are informative red checks.

• They are the only red checks which can be filtered out, as shown below

• They do not stop the verification

• As with other red checks, code found after them are gray (unreachable)

• These checks can only be red. There are no orange NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

2-65

2 Check Descriptions

Check Description

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.
• while(1) { function_call(); }
Informative NTL.

• while(x>=0) {x++; }
Where x is an unsigned int. This may reveal a bug.

• for(i=0; i<=10; i++) my_array[i] = 10;
Where “int my_array[10];” applies. This red NTL reveals a
bug in the array access, flagged in orange.

• ptr = NULL; for(i=0; i<=100; i++)*ptr=0;
The first iteration of the loop is red, and therefore it is flagged
as an NTL. The “i++” will be gray, because the first iteration
crashed.

NTC Suppose that a function calls f(), and that function call is flagged
with a red NTC check. There could be five distinct explanations:

• “f” contains a red error.

• “f” contains an NTL.

• “f” contains an NTC.

• “f” contains an orange which is context dependant; that is, it
is either red or green. For this particular call, it makes the
function “f” crash.

• “f” is a mathematic function, such as sqrt, acos which has
always an invalid input parameter.

Remember, additional information can be found when clicking
on the NTC.

Note A sqrt check is only colored if the input parameter is nevervalid. For
instance, if the variable x may take any value between -5 and 5, then sqrt(x)
has no color.

2-66

Colored Source Code for C++

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.
The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under verification).

If a function is identified which is not expected to terminate (such as a loop
or an exit procedure) then the -known-NTC function is an option. You will
find all the NTCs and their consequences in the known-NTC facility in the
Viewer, allowing you to filter them.

Non Termination of Call: NTC
Check to establish whether a procedure call returns.

It is not the case when the procedure contains an endless loop or a certain
error, or if the procedure calls another procedure which does not terminate.
In the latter instance, the status of this check is propagated to caller.

C++ Example.

1
2 static volatile int _x = 1;
3
4 void foo(int x)
5 {
6 int y = 1 / x; // ZDV Warning: depends on context
7 while(1) { // NTL ERROR: loop never terminates
8 if (y != x) {
9 y = 1 / (y-x); // ZDV Verified
10 }
11 }
12 }
13
14 void main(void) {
15
16 if (_x)

2-67

2 Check Descriptions

17 foo(0); // NTC ERROR: Zero DiVision (ZDV) in foo
18 if (_x)
19 foo(2); // NTC ERROR: Non Termination Loop (NTL) in foo
20 }
21

Explanation. In this example, the function foo is called twice in main and
neither of these 2 calls ever terminates:

• The first never returns because a division by zero occurs at line 6 (bad
argument value), and propagation of this error is propagated to caller at
line 17.

• The second never terminates because of an infinite loop (red NTL) at line
7. This error is propagated to caller at line 19.

As an inside, note that by using either the -context-sensitivity "foo" option
or the -contex-sensitivity-auto option at launch time, it is possible for
PolySpace to show explicitly that a ZDV error comes from the first call of
foo in main.

Non Termination of Loop: NTL
Check to establish whether a loop (for, do-while, while) terminates.

C++ Example.

1
2 class NTL {
3 public:
4 NTL();
5 void rte_loop(void);
6 void task (void);
7 void update_alpha(double *a);
8 void send_data(double a);
9 };
10
11 static volatile double _acq =0.0;
12 static volatile int start_ = 0;
13
14

2-68

Colored Source Code for C++

15 typedef void (NTL::*ptask) ();
16
17 extern void launch(ptask);
18
19
20 void NTL::task(void)
21 {
22 double acq, filtered_acq, alpha;
23
24 // Init
25 filtered_acq = 0.0;
26 alpha = 0.85;
27
28 while (1) { // NTL ERROR: [non termination of loop]
29 // Acquisition
30 acq = _acq;
31 // Treatment
32 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
33 // Action
34 send_data(filtered_acq);
35 update_alpha(&alpha);
36 }
37 }
38
39 void NTL::rte_loop(void)
40 {
41 int i;
42 double twentyFloat[20];
43
44 for (i = 0; i <= 20; i++) { // NTL ERROR: propagation \
of OBAI ERROR

45 twentyFloat[i] = 0.0; // OBAI Warning: 20 \
verification with i in [0,19]

46 // and one ERROR with i = 20
47 }
48 }
49
50 NTL::NTL()
51 {
52

2-69

2 Check Descriptions

53 ptask mytask = &NTL::task;
54 if (start_)
55 launch(mytask);
45 }

Explanation. In the example at line 19, the "continuation condition" is
always true and the loop will never exit. Thus PolySpace will raise an error.
In some case, the condition is not trivial and may depend on some program
variables. Nevertheless PolySpace is still able to analyze those cases.

On the other error at line 35, the red OBAI related to the 21th execution of
the loop has been transformed in an orange warning because of the 20 first
verified executions.

Tooltips for NTL Checks. Tooltips provide range information in the viewer,
including the number of iterations for loops.

There are 2 possible situations:

• Loops that terminate – A tooltip gives the number of iterations of the
loop. For example, for (i=0; i<10; i++), a tooltip on the for keyword
says Number of iteration(s): 10.

• Non–terminating loops — The NTL check contains information about
the maximum number of iterations that can be done. This number is an
overset of the real number of iterations (which may be lower).

For example:

- Failure at a given iteration, for (i=0; i<10; i++) y = 2 /
(i - 5); — The NTL check on the for keyword says: Number of
iteration(s): 6

This means that the loop fails at the 6th iteration, which can help you
find the orange check that contains the failure.

- Infinite loop x = 0; while (x >= 0) y = 2; — The NTL check on
the for keyword says: Number of iteration(s): 0..?

This means that the loop has an unknown number of iterations (up to
an infinite number). It does not mean that the loop is an infinite loop,
but that it may be an infinite loop. You would also get 0..? on the loop
while (1) { if (random) break; }.

2-70

3

Approximations Used
During Verification

• “Why PolySpace Verification Uses Approximations” on page 3-2

• “Approximations Made by PolySpace Verification” on page 3-4

3 Approximations Used During Verification

Why PolySpace Verification Uses Approximations

In this section...

“What is Static Verification” on page 3-2

“Exhaustiveness” on page 3-3

What is Static Verification
PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required

3-2

Why PolySpace® Verification Uses Approximations

to establish that – and hence the gain in efficiency compared to traditional
approaches.

Static code verification does have an exact solution, but that solution is
generally not practical, as it would generally require the enumeration of all
possible test cases. As a result, approximation is required.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no runtime error (RTE) item
to be checked can be missed by PolySpace.

3-3

3 Approximations Used During Verification

Approximations Made by PolySpace Verification

In this section...

“Volatile Variables” on page 3-4

“Structures with Volatile Fields” on page 3-4

“Absolute Addresses” on page 3-5

“Pointer Comparison” on page 3-5

“Left Shift on Negative Variables” on page 3-5

“Bitfields” on page 3-6

“Shared Variables” on page 3-6

“Trigonometric Functions” on page 3-7

“Unions” on page 3-7

“Constant Pointer” on page 3-8

Volatile Variables
Volatile variables are potentially uninitialized and their content is always
full range.

2 int volatile_test (void)
3 {
4 volatile int tmp;
5 return(tmp); // NIV orange: the variable content is full range[-
2^31;2^31-1]
6 }

In the case of a global variable the content would also be full range, but the
NIV check would be green.

Structures with Volatile Fields
In this example, although only the b field is declared as volatile, in practice
any read access to the “a” field will be full range and orange.

2 typedef struct {

3-4

Approximations Made by PolySpace® Verification

3 int a;
4 volatile int b;
5 } Vol_Struct;

Absolute Addresses
Both reading from, and writing to, an absolute address leads to warning
checks on the pointer dereference. An absolute address is considered as a
volatile variable.

Val = *((char *) 0x0F00); // NIV and IDP orange: access to an
absolute address

Pointer Comparison
PolySpace is a static tool analyzing source code. Memory management
concerns dynamic considerations, and the characteristics of particular
compilers and targets. PolySpace therefore doesn’t consider where objects
are actually implanted in memory

5 int *i, *j, k;
6 i = (int *) 0x0F00;
7 j = (int *) 0x0FF0;
8
9 if (i < j) // the condition can be true or false
10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

Its the same situation if “i” and “j” point to real variables

6 i = & one_variable;
7 j = & another_one;
9 if (i < j) // the condition can still be true or false

Left Shift on Negative Variables
Consider the example below.

• When the option -allow-negative-operand-in- shift is not used.
PolySpace gives a red error on the SHF check because behavior is
compiler-dependant.

3-5

3 Approximations Used During Verification

• When the option -allow-negative-operand-in- shift isused, y is always
full range even if the signed value of x is known.

4 char x, y;
5 x = 0x8F;
6 y = x << 3 ; // OVFL and UNFL Warnings

Bitfields
PolySpace considers a bitfield to be a permanently full range variable.

4 typedef struct _x
5 { unsigned int a:1;
7 unsigned int b:1; } bit;

12 int main(void)
13 { bit z;
14 z.b = 0;
15 z.a = 1;
16 assert(z.a == 1); // orange ASRT

Shared Variables
At the minimum, a shared variable contains a union of all ranges it can
contain among the application. At the maximum, the variable will be full
range.

12 void p_task1(void)
13 {
14 begin_cs();
15 X = 0;
16 if (X) {
17 Y = X; // Verified NIV, even it should be gray
18 assert (Y == 12); // Warning assert, even it should be gray
19 }
20 end_cs();
21 }
22
23 void p_task2(void)
24 {
25 begin_cs();
26 X = 12;

3-6

Approximations Made by PolySpace® Verification

27 Y = X + 1; // Verifier considers [X==1] or [X==13]
28 if (Y == 13)
29 Y = 14;
30 else
31 Y = X - 1 ; // Verified checks even it should be gray
32 end_cs();
33 }

Trigonometric Functions
With all trigonometric functions such as cosines, sines etc., PolySpace always
assumes that the return value is bound between the limits of that function -
irrespective of the parameter passed to it. Consider the following example,
which uses acos, sin and asin functions.

7 double res;
8
9 res = sin(3.141592654);
10 assert(res == 0.0); // Range is [-1..1]
11
12 res = asin(0.0);
13 assert(res == 0.0); // Always in [-pi/2..pi/2]
14
15 res = acos(0.0);
16 assert(res == 0.0); // Always in [0..pi]

Unions
It is recognized nonetheless that there are situations in which the careful
use of unions is desirable in constructing an efficient implementation.
Nevertheless, the kinds of implementation behavior that might relevant are:

• Padding: padding could be inserted at the end of an union.

• Alignment: members of any structures within union could have different
alignments.

• Endianness: whether the most significant byte of a word could be stored at
the lowest or highest memory address.

• Bit-order: bits within bytes could have both different numbering and
allocation to bit fields.

3-7

3 Approximations Used During Verification

This why PolySpace can lose precision when structure unions are considered.
Indeed this kind of implementation is compiler dependant. Conversions from
one type a union to another will cause a loss of precision on the following
check:

Is the other field initialized? Orange NIV

typedef union _u {
int a;
char b[4]; } my_union;
my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;
if (X.A == 0x1111)
else // both branches are reachable

Constant Pointer
To increase PolySpace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

3-8

	toc
	Options Description
	Overview
	Sources/Includes
	-results-dir Results_Directory
	-sources files or -sources-list-file file_name
	-I directory

	General
	Overview
	-prog Session identifier
	-date Date
	-author Author
	-verif-version Version
	-keep-all-files
	-continue-with-existing-host (Deprecated)
	-allow-unsupported-linux (Deprecated)
	Report Generation
	-report-template Report_Template_Name
	-report-output-format Output_Format
	-report-output-name Name

	Targets/Compilers
	-target TargetProcessorType
	GENERIC ADVANCED TARGET OPTIONS
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]

	-OS-target OperatingSystemTarget
	-D compiler-flag
	-U compiler-flag
	-include file1[,file2[,...]]
	-post-preprocessing-command "command"
	-post-analysis-command <file_name> or "command"

	Compliance with Standards
	-dos
	Embedded Assembler
	-discard-asm

	-wchar-t-is-unsigned-long
	-size-t-is-unsigned-long
	-no-extern-C
	-no-stl-stubs
	-dialect DialectName
	-wchar-t-is
	-for-loop-index-scope
	-ignore-pragma-pack
	Visual Specific Options
	-import-dir directory
	-pack-alignment-value value
	-support-FX-option-results

	Coding Rules Checker
	Check JSF C++ rules
	-jsf-coding-rules [all-rules | file_name]
	Check MISRA C++ rules
	-misra-cpp [all-rules | file_name]
	-includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]

	-ignore-constant-overflows
	-allow-undef-variables
	-allow-negative-operand-in-shift
	-Wall

	PolySpace Inner Settings
	-unit-by-unit
	-unit-by-unit-common-source filename
	-main sub_program_name
	Generate a Main Using a Given Class
	-class-analyzer
	-class-only
	-class-analyzer-calls
	-no-constructors-init-check

	-main-generator-calls
	General options for the generation of mains
	-function-called-before-main
	-main-generator-writes-variables

	-data-range-specifications file_name
	-no-automatic-stubbing
	-ignore-float-rounding
	-detect-unsigned-overflows
	Example 1
	Example 2
	-enum-type-definition
	-machine-architecture
	-max-processes
	-extra-flags option-extra-flag
	-cpp-extra-flags flag
	-il-extra-flags flag

	Precision/Scaling
	-quick (Deprecated)
	Benefits
	Limitations

	-O(0-3)
	-from verification-phase
	-to verification-phase
	-context-sensitivity "proc1[,proc2[,...]]"
	-context-sensitivity-auto
	-path-sensitivity-delta number
	-k-limiting number
	-inline "proc1[,proc2[,...]]"
	-respect-types-in-globals
	-respect-types-in-fields
	-less-range-information
	-no-pointer-information
	Tuning Precision and Scaling Parameters
	Precision versus Time of Verification
	Precision versus Code Size

	MultiTasking (PolySpace Server for C/C++ Only)
	-entry-points str1[,str2[,...]]
	-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	-temporal-exclusions-file file_name

	Specific Batch Options
	-server server_name_or_ip[:port_number]
	-sources-list-file file_name
	-v | -version
	-h[elp]

	Check Descriptions
	Check Categories
	Acronyms associated to C++ specific constructions:
	Acronym Not Related to C++ Constructions (Also Used for C Code):

	Colored Source Code for C++
	Function Returns a value: FRV
	C++ Example
	Explanation

	Non Null this-pointer: NNT
	C++ Example
	Explanation

	Positive Array Size: CPP
	C++ Example
	Explanation

	Incorrect typeid Argument: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Pointer: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Reference: CPP
	C++ Example
	Explanation

	Invalid Pointer to Member: OOP
	C++ Example
	Explanation

	Call of Pure Virtual Function: OOP
	C++ Example
	Explanation

	Incorrect Type for this-pointer: OOP
	C++ Example
	Explanation

	Potential Call to: INF
	C++ Example
	Explanation

	Non-Initialized Variable: NIV/NIVL
	C++ Example
	Explanation

	Non-Initialized Pointer: NIP
	C++ Example
	Explanation

	User Assertion Failure: ASRT
	C++ Example
	Explanation

	Overflows and Underflows
	Scalar and Float Overflows: OVFL
	Scalar and Float Underflows: UNFL (Deprecated)
	Float Underflow and Overflow: UOVFL (Deprecated)

	Scalar or Float Division by zero: ZDV
	C++ Example

	Shift Amount is Outside its Bounds: SHF
	C++ Example
	Explanation

	Left Operand of Left Shift is Negative: SHF
	C++ Example
	Explanation

	POW (Deprecated)
	Array Index is Outside its Bounds: OBAI
	C++ Example
	Explanation

	Function Pointer Must Point to a Valid Function: COR
	C++ Example
	Explanation

	Wrong Number of Arguments: COR
	C++ Example
	Explanation

	Wrong Type of Argument: COR
	C++ Example
	Explanation

	Pointer is Outside its Bounds: IDP
	C++ Example
	Explanation
	Understanding Addressing
	Understanding Pointers
	C++ Example
	Explanation

	Function throws: EXC
	C++ Example
	Explanation

	Call to Throws: EXC
	C++ Example
	Explanation

	Destructor or Delete Throws: EXC
	C++ Example
	Explanation

	Main, Tasks or C Library Function Throws: EXC
	C++ Example
	Explanation

	Exception Raised is Not Specified in the Throw List: EXC
	C++ Example
	Explanation

	Throw During Catch Parameter Construction: EXC
	C++ Example
	Explanation

	Continue Execution in __except: EXC
	C++ Example
	Explanation

	Unreachable Code: UNR
	C++ Example
	Explanation

	Non Terminations: Calls and Loops
	Non Termination of Call: NTC
	Non Termination of Loop: NTL

	Approximations Used During Verification
	Why PolySpace Verification Uses Approximations
	What is Static Verification
	Exhaustiveness

	Approximations Made by PolySpace Verification
	Volatile Variables
	Structures with Volatile Fields
	Absolute Addresses
	Pointer Comparison
	Left Shift on Negative Variables
	Bitfields
	Shared Variables
	Trigonometric Functions
	Unions
	Constant Pointer

